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The nice thing about having a brain is that one can learn,

that ignorance can be supplanted by knowledge,

and that small bits of knowledge

can gradually pile up into

substantial heaps.

— Douglas Hofstadter, Le Ton beau de Marot (1997)
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ABSTRACT

Fluorescent molecules move and rotate as they transition between states and emit photons

that we can detect. How much information can we recover about the position, orientation,

and motion of fluorescent molecules by measuring these photons? Can we design imaging

systems that recover as much information as possible by making optimal measurements?

In this dissertation, we develop mathematical models of this class of experiments, effi-

cient reconstruction and visualization schemes, and methods for designing instruments that

acquire optimal samples. We use these methods to propose and demonstrate the first spatio-

angular imaging system that can measure the three-dimensional position and orientation of

fluorescent molecules that densely label biological structures. We validate our techniques

by successfully reconstructing known spatio-angular objects, and we are beginning to use

spatio-angular microscopy to explore new biological structures.

Our proof of concept paves the way towards microscopes that can encode, measure, and

reconstruct fundamentally new information from fluorescent molecules. We discuss existing

applications and speculate on future directions.
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CHAPTER 1

INTRODUCTION

This dissertation introduces a new approach for designing imaging systems that can

measure the position, orientation, and rotational mobility of dense ensembles of flu-

orescent molecules. Existing design approaches are disparate and ad hoc—polarized fluores-

cence imaging systems are designed by a combination of intuition and iteration. Instead, we

study the physical limits that all fluorescence microscopes face, and we find that no exist-

ing designs measure all of the information available from fluorescent samples. We begin to

close this gap by proposing and demonstrating the first fluorescence imaging system that can

measure the three-dimensional position and orientation of fluorescent objects, and we show

that there remains room for improvement. This dissertation shows that designing new in-

struments to saturate physical limits leads to fluorescence imaging systems that can measure

fundamentally new information from biological samples.

To understand the physical limits that fluorescence microscopes face, it is worthwhile to

understand that fluorescence microscopes fall into the broader class of emission tomogra-

phy imaging systems—systems that image self-luminous objects. The task of the emission

tomography designer is to arrange detectors and emission-modifying elements around the

sample so that useful information about the sample is encoded into the detector measure-

ments. Examples of emission tomography imaging systems include single-photon emission

computed tomography (SPECT), positron emission tomography (PET), and seismic tomog-

raphy. A good emission tomography design will encode as much information as possible into

measurements while ensuring that information about the sample is recoverable.

In fluorescence microscopy, we begin with a sample that has been labeled with fluorescent

molecules. To first order, these fluorescent molecules emit fields that we can model as a

1



scalar-valued monochromatic spherical wave

U(r) = 1
|r|

exp
(
−2πin|r|

λ

)
, (1.1)

where r is a three-dimensional coordinate measured from the emitter’s position, n is the

index of refraction of the medium, and λ is the emission wavelength—see Fig. 1.1a) for

an illustration. Detectors cannot measure these fields directly, but with a bright enough

emitter they can measure the absolute square of these fields (the irradiance, or commonly

the intensity). If we arrange unadorned detectors around the emitter, then we can measure

the irradiance pattern

I(r) = |U(r)|2 = 1
|r|2

. (1.2)

In reality, we cannot even measure the irradiance pattern directly; we can only measure

discrete photons with probabilities proportional to the irradiance. Readers familiar with

quantum mechanics will recognize that the scalar fields in Eq. (1.1) play the role of the wave

function, the irradiance in Eq. (1.2) plays the role of an unnormalized detection probability,

and photon measurements consist of discrete events that “collapse the wavefunction”.

Equation (1.2) is the deterministic point-spread function for this simple fluorescence imag-

ing system, and studying this function is essential for understanding the limits of any linear

imaging system. The breadth of the point-spread function indicates how much information

about the emitter’s position is encoded into our measurements, and in this case the point-

spread function has a broad 1/r2 dependence. To make this point-spread function narrower,

we need to introduce elements that modify the emitted fields. Phase-modifying elements are

available, so we can use interference to shape the point-spread function into a spot that is

much narrower than Eq. (1.2). A back-of-the-envelope calculation reveals the minimum size

of this spot. The emitted waves have spatial frequency n/λ, and we would like to find the

2



a)

λ/n

b)

ŝ

Im

Re

Figure 1.1: A comparison of monopole and dipole far-field emission patterns at a single
instant in time. a) A monopole emits monochromatic isotropic scalar-valued waves with
wavelength λ/n. The hue and saturation encode the complex phase and magnitude of the
emitted wave, respectively (see color wheel). b) A dipole emitter with transition moment ŝ
emits monochromatic vector-valued waves with wavelength λ/n and electric field orientation
r × ŝ × r. The direction and length of each small black arrow encodes the orientation and
magnitude of the emitted electric field at the arrow’s tail, respectively.

spatial frequency content of arbitrary sums of these waves squared. Summing and squaring

waves in the spatial domain is equivalent to summing and autocorrelating in the frequency

domain, so the maximum spatial frequency of the irradiance pattern is 2n/λ. Therefore, the

minimum irradiance spot size is approximately λ/(2n). This spot size represents a physi-

cal limit on fluorescence microscopes—we can never hope to recover information about the

sample in object volumes smaller than [λ/(2n)]3 without prior information.

In practice, real instruments cannot interfere all of the plane waves emitted by a sample

into a single irradiance spot, so real irradiance spots sizes do not saturate the physical limit.

A paraxial imaging system that interferes all of the waves emitted within a cone of half angle

3



α onto a two-dimensional detector creates an irradiance spot of the form

I(2D)(r) =
∣∣∣∣∣J1(πνc|r|)

νc|r|

∣∣∣∣∣
2
, νc = 2n sinα

λ
, (1.3)

where r is a two-dimensional coordinate measured from the center of the irradiance spot,

and J1(x) is a first-order Bessel function of the first kind. Notice that Eq. (1.3) decays with

a 1/r3 dependence (since |J1(x)| ∼ x−1/2 for large x), so this point-spread function is much

narrower than Eq. (1.2). This function is called an Airy pattern, and it serves to illustrate

several of the design choices that fluorescence microscopists face. First, the value λ/(2n sinα)

is proportional to the width of the Airy pattern, so microscopes that encode the most spatial

information use a large index of a refraction n, a large collection angle α, and a short

wavelength λ. Every microscope designer uses the value λ/(2n sinα) to choose the size of

their detector elements so that they are sampling at the physical limit. Second, real imaging

systems miss the physical limit by a factor of 1/ sinα, which highlights the importance

of interfering waves from a wide range of angles. Finally, the value n sinα simultaneously

controls the width of the irradiance spot and serves as an invariant quantity for rays traveling

through layered media with different indices of refraction n0 sinα0 = n1 sinα1 (Snell’s law).

Together, these properties merit n sinα a special name: the numerical aperture

NA = n sinα. (1.4)

We briefly note that increasing the collection angle α has an additional benefit: collecting

more of the emitted wave results in larger irradiances and proportionally larger numbers of

measured photons.

The quantity λ/(2n sinα) is of such importance to microscopy that it earned a place

on Ernst Abbe’s stone memorial in Jena, Germany. We want to reemphasize that this

quantity represents the combination of two different limits: the physical limit λ/(2n) and

4



the instrumental limit 1/ sinα. The physical limit is set by how much structure the emitted

signal has, while the instrumental limit is set by the design of our imaging system. The

physical limit is the more fundamental limit, and the instrument can saturate but not exceed

the physical limit.

Although Eq. (1.1) is a reasonable way to start modeling fluorescent emitters, it does

not meet all of our expectations for an emitted electromagnetic wave. Readers familiar with

electrodynamics will recall that electromagnetic radiation consists of vector-valued transverse

waves, not scalar-valued waves like Eq. (1.1). Additionally, electromagnetic radiation is

always created by accelerated charges, and the isotropic emissions modeled in Eq. (1.1)

imply that charges have been accelerated in a way that violates the conservation of charge [2].

Clearly, a more accurate model of emission is required.

The fields emitted by most fluorescent molecules can be modeled by

E(r) = r× ŝ× r

|r|3
exp

(
−2πin|r|

λ

)
, (1.5)

where ŝ is the dipole emission moment of the molecule—see Fig. 1.1b) for an illustration.

This emission pattern is vector-valued (polarized) and anisotropic, so it meets our baseline

expectations. The fact that Eq. (1.5) is a more accurate model for emission than Eq. (1.1)

implies that the emitted fields have more angular structure than we initially realized. This

raises the possibility of encoding angular information into the emitted signals.

A key result of this dissertation is that the vector-valued signal in Eq. (1.5) can carry

exactly six times as much information as the scalar-valued signal in Eq. (1.1). This realization

raises the physical limit of all fluorescence microscopes to include six angular components,

and it is now up to the instrument designer to build microscopes that can saturate this new

limit. We pursue these improvements throughout the dissertation.

The six-fold improvement of the physical limit is surprising. Why an integer? Why six?

Both of these questions have answers that lead to deep insights about this class of imaging.

5



The improvement is integer-valued because of the topology of the configuration space of a

dipole emitter—the configuration space is compact, so operators that act on it have discrete

spectra. The improvement factor is six because we live in three dimensions, and photon

detection probabilities scale with the square of the fields. The vector space of homogeneous

polynomials of degree two in three variables is six-dimensional, which leads directly to the

six-fold improvement we predict.

We have been careful to specify that all of the physical and instrumental limits discussed

so far are for imaging emitting objects when no priors are available. Exploiting priors

allows us to encode even more information into the measurements we make. For example,

structured illumination can be used to excite fluorescent molecules in specific positions and

orientations within the sample, and this approach allows us to design and encode prior

information about where fluorescent emissions originate. In other words, we can alias high-

frequency information about the sample into the passband of the system, and this capability

allows us to improve the spatial and angular resolution of fluorescence imaging systems.

This dissertation builds on the work of three fields: polarized fluorescence spectroscopy,

fluorescence microscopy, and image science. In the remainder of this introduction we give

brief histories of these fields and highlight the key ideas that have helped inform this disser-

tation. We conclude with a summary of this dissertation’s themes and its chapter-by-chapter

contributions.

1.1 Background: Polarized fluorescence spectroscopy

The first written account of fluorescent emissions appeared in Nicolás Bautista Monardes’

1565 book Historia Medicinal—an encyclopedia of medicinal plants imported to Spain from

Mexico [3]. Monardes described how the Aztecs would soak thin slices of a white wood in

water, and the water would turn pale blue in sunlight. The Aztecs used this solution as a

diuretic, and an early Latin translation of Monardes’ work by Charles de L’Écluse gave the

6



wood its widely used name Lignum nephriticum—literally, kidney wood.

Samples of Lignum nephriticum circulated in 16th to 18th century Europe, and bowls

and cups turned from the wood were given as gifts to royalty [4, 5]. Many early scientists

attempted to explain the origin of the pale-blue color, but even giants missed the mark. In

the same book where he coined the word “diffraction”, Francesco Maria Grimaldi described

his investigation of Lignum nephriticum and concluded that the color was due to reflection

within the solution [6]. Robert Boyle drew similar conclusions and demonstrated that the

blue color could be made to disappear and reappear by changing the acidity of the solution—

the first fluorescence pH sensor [7]. Isaac Newton wrote of several investigations [8, 9], and

he echoed Grimaldi when he wrote that the solution was “apt to reflect one sort of light

and transmit another” [10]. It appears that Isaac Newton’s definitive accounts (and his later

stature) concluded the scientific investigation of Lignum nephriticum among early scientists.

In the 19th century, Lignum nephriticum was absent from the scientific literature as

samples of the wood were unavailable. In 1915, the Smithsonian Institution sent William

Edwin Safford, a botanist, to Mexico to find the source of the wood and investigate its

medicinal properties [4]. Safford found that wood from the species Eysenhardtia polystachya

created blue solutions that matched earlier descriptions, but he noted that the tree was too

thin limbed to be turned into a cup or bowl. Safford investigated further and found that

the national tree of the Philippines, Pterocarpus indicus or commonly narra, created blue

solutions, had thick limbs, and was accessible to Europe after 1565 via Filipino–Mexican–

Spanish trades routes. Monardes performed his investigations before 1565, so his samples

must have come directly from Mexico. However, the cups and bowls that Boyle and Newton

studied were likely misattributed to Mexico since they traveled through Mexico on their way

to Spain. More recently, Acuña and coworkers have identified the fluorescent compound in

Eysenhardtia polystachya as Coatline B [11] and have assembled a more complete account

of this wood’s history [12].
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The credit for the first modern description of fluorescence goes to George Gabriel Stokes

in 1852 [13]. Starting his investigation with John Herschel’s observation of blue light from

a quinine sulphate solution [14], Stokes arrived at two principal conclusions: (1) fluorescent

emissions originate from within the solution “as if the fluid were self-luminous”, and (2)

fluorescent emissions always have a longer wavelength than the incident light (the so-called

Stokes shift). Stokes listed many other solutions that displayed fluorescence, and noted that

fluorescent light could be used to test for the presence of fluorescent substances (although

he notes that “unfortunately, these observations for the most part require sunlight”). Stokes

also observed that illuminating his samples with polarized light did not change the emitted

light, and the emitted light was always unpolarized. We will discuss this observation, which

we now know to be true only under certain conditions, further in chapter 4.

Fluorescent emitters found early applications in lighting (Edmond Becquerel, father of

better-known Henri, conceived of fluorescent light bulbs in 1857; Becquerel also has a poten-

tial priority claim for discovering the Stokes shift [15]), analytical chemistry (Göppelsröder

made the progress of a chemical reaction visible with fluorescence in 1868 [16]), and hy-

drogeology (the Danube’s underground flow was fluorescently traced in 1877 [17]). In the

1920s Weigert studied the polarization of fluorescent emissions [18], Wawilow and Lewschin

studied the differences of polarization between different dyes [19], and Francis Perrin syn-

thesized all of the existing data by accounting for the fluorescence lifetime of the emitting

molecules [20].

During his studies of polarized fluorescence Perrin introduced a quantity called the

polarization, which he defined as

p = I − I⊥
I + I⊥

, (1.6)

where I (I⊥) is the irradiance measured by a low collection-angle detector (α ≈ 0) behind a

polarizing filter that is oriented parallel (perpendicular) to the polarization of the illumina-
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tion light. Note that the word polarization is overloaded: it can refer to a property of light

or the result of the specific experiment described above. Perrin used this definition to derive

a fundamental relationship in polarized fluorescence spectroscopy called the Perrin equation

1
p

= 1
p0

+
(

1
p0
− 1

3

)
τF
τR
, (1.7)

where p0 is the fundamental polarization, τF is the fluorescence lifetime of the molecule, and

τR is the rotational correlation time of the molecule. When the molecule is approximately

spherical, the rotational correlation time is related to other physical quantities by

τR = ηV

kBT
, (1.8)

where kB is Boltzmann’s constant, T is the absolute temperature, η is the viscosity of the

solution, and V is the volume of the fluorescent molecule. The fundamental polarization is

the polarization that would be observed if the fluorescent molecules do not rotate between

excitation and emission. Finding the fundamental polarization of a fluorescent molecule is

simple using the Perrin equation: measure the polarization p as the temperature or viscos-

ity of the solution varies, plot 1/p against the varied parameter and draw the line of best

fit (a Perrin plot), then find the y-intercept as the value of 1/p0. Perrin’s work provided

a strong theoretical foundation for the field of polarized fluorescence spectroscopy: he de-

scribed a linear relationship between a fundamental property of a fluorescent molecule (the

fundamental polarization) and the observed data {I , I⊥}, then he used a graphical method

as a linear reconstruction algorithm.

In 1960, Jabłoński introduced the emission anisotropy to simplify Perrin’s expressions [21]

r = I − I⊥
I + 2I⊥

. (1.9)
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Rewriting the Perrin equation in terms of the emission anisotropy leads to the simpler

expression

r0
r

= 1 + τF
τR
, (1.10)

where r0 is the fundamental anisotropy. All of Perrin’s conclusions and methods remain qual-

itatively unchanged; we start with data {I , I⊥} then use a linear model-based reconstruction

to estimate the fundamental anisotropy. Once again, the word anisotropy is overloaded: it

can describe a non-uniform angular distribution of fluorophores or the result of the specific

experiment described above.

The polarization and the emission anisotropy are extremely useful quantities for analyzing

and characterizing fluorescent molecules in solution, but their utility diminishes as soon as we

consider ensembles of fluorescent molecules that are not oriented isotropically. For example,

consider an ensemble of fluorescent dipole emitters that are oriented along a single direction.

The measured values of I and I⊥ now depend on the orientation of the dipole emitters

with respect to the polarizer orientations. Of course, we can still calculate a value for the

polarization or emission anisotropy, but these values are rotation variant—they change when

we rotate the sample or the instrument. Clearly, one pair of measurements is not enough to

characterize fluorescent samples that are not oriented isotropically.

More recent work by Weber [22, 23], Albrecht [24], Lakowicz [25], and many others have

moved polarized fluorescence spectroscopy from physics labs into much broader use. Lakow-

icz’ comprehensive book Principles of Fluorescence Spectroscopy covers much of the field of

polarized fluorescence spectroscopy, and it highlights many useful applications. Although

the field appears to be nearly mature, we think there is room for growth in both instru-

mentation and applications. In particular, we are interested in building instruments that

can help us understand fluorescent molecules that are distributed anisotropically. In this

dissertation we generalize Perrin’s work to cases where fluorescent molecules are angularly
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constrained, then design instruments and linear reconstruction schemes that can recover

more information than existing polarized fluorescence spectroscopy experiments.

1.2 Background: Fluorescence microscopy

The early transmitted-light microscopes of Galileo Galilei, Antonie van Leeuwenhoek, and

Robert Hooke were difficult to use and improve before the contributions of Ernst Abbe in

the late 19th century. In addition to his aforementioned theory of resolution in microscopy,

Abbe calculated the specific conditions that an optical system must meet to form a two

dimensionally shift-invariant image—the Abbe sine condition [26, 27]. The improved resolu-

tion and extended field of view of Abbe’s imaging systems enabled too many applications to

count. Essentially every optical microscope since 1900 has used Abbe’s designs.

In 1911, Heimstädt imaged autofluorescent bacteria by focusing ultraviolet light onto the

sample with darkfield illumination—illumination that does not enter the detection objective—

to minimize background [28]. Haitinger improved on the dim autofluorescent signals by label-

ing with extrinsic dyes, and he introduced the widefield epi-illumination configuration where

the same objective is used for both illumination and detection [29]. The development of

dichroic mirrors allowed the background to be reduced even further [30]. Combined with the

flexibility and specificity of immunofluorescent labeling [31], the widefield epi-illumination

fluorescent microscope became one of the most useful tools in the modern biology lab.

In 1834 Talbot published the first use of polarized light in a compound microscope [32]

although Brewster performed simple investigations of minerals and plants as early as 1814 [33].

Polarized light microscopy found its first major use in live-cell imaging in work by Schmidt [34]

and Inoué [35] in their studies of the mitotic spindle. The ∼25-nm diameter microtubules of

the mitotic spindle are invisible to typical transmission microscopes, but the addition of po-

larizing elements provided a new contrast mechanism that enabled early glimpses down to

the nanometer scale.
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In the late 1970s the first pair of quantitative polarized fluorescence microscopy studies

was published [36, 37]. Interestingly, the authors of both studies are better known for

their later contributions: two-photon microscopy for Watt Webb and total-internal reflection

microscopy for Daniel Axelrod. Both studies used models for polarized excitation, angular

diffusion, and polarized detection to interpret their measurements and recover physically

meaningful parameters that describe biological samples. A broad range of developments in

wide-field fluorescence polarization techniques occurred in the following decades: improved

angular diffusion models [38], studies of myosin and muscle fibers [38, 39], and studies of

fluorophores near interfaces [40].

Another major milestone occurred in 1994 when green fluorescent protein (GFP) was

first expressed in a genetically modified organism [41]. This work spawned an enormous field

devoted to developing fluorescent proteins that can report on biological pathways and gene

expression in situ and in living samples. In 2002, Inoué and colleagues showed that GFP

crystals display anisotropic absorption and emission [42], and Rosell and Boxer reported

the orientations of the dipole absorption and emission moments with respect to the GFP

molecule [43]. Genetically encoded fluorophores that exhibit anisotropic absorption and

emission have been used in many widefield polarized light microscopy applications since:

studies of lipid rafts [44, 45], septins [46–49], integrins [50], the nuclear pore complex [51, 52],

and actin [53] have been reported.

Widefield polarized fluorescence techniques have been combined with many other illu-

mination and detection techniques: two-photon excitation [54–56], Föster resonance energy

transfer (FRET) [57], and fluorescence lifetime imaging (FLIM) [58–60]. Polarized-light

FLIM often uses the name time-resolved fluorescence anisotropy imaging (TR-FAIM) to dis-

tinguish itself from steady-state fluorescence anisotropy imaging (SS-FAIM). Time-resolved

measurements give access to even more information about the sample including anisotropic

angular diffusion and fluorescence lifetimes. We will consider time-resolved measurements
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briefly in chapter 4, but this dissertation mostly focuses on extending steady-state anisotropy

imaging.

The ability to image single molecules has led to extremely valuable new ways of imaging

biological samples. The Weiss lab reported the first experiments that used polarized excita-

tion to track the orientation and state of single molecules [61, 62], and more recent work has

exploited detection-side polarizers to the same effect [63–65]. These polarizing-filter single-

molecule techniques have been applied to study molecular motors [66], actin dynamics [67],

forces on single strands of DNA [68], and protein conformation changes at the ångstrom

scale [69].

Although polarizing filters can be used to measure the orientation of fluorescent molecules,

these filters are not strictly necessary. The Novotny and Enderlein labs demonstrated that

the orientation of a fluorescent dipole is encoded in its irradiance pattern [70–73], and the En-

derlein lab showed that two images at different defocus positions can be used to recover the

three-dimensional position and orientation of single fluorescent molecules [74]. The Rieger,

Stallinga, and Moerner labs realized that these irradiance patterns could introduce bias into

typical Gaussian-fit single-molecule localization algorithms [75–78], and the Moerner group

reported algorithms and meta-surface masks designed to reduce these biases [79–81]. Most

recently, the Lew lab has been developing methods to measure the angular information emit-

ted by single molecules using optimized phase masks that achieve fundamental limits [82–86].

To date, all polarized fluorescence studies of ensembles of molecules have implicitly as-

sumed that a fluorescent dipole creates an Airy pattern-shaped irradiance patterns inde-

pendent of the dipole’s orientation. The single molecule community has shown that this

assumption is not true—the irradiance pattern is strongly dependent on the dipole’s orien-

tation. One of the major goals of this dissertation is to show how the information encoded

in orientation-dependent irradiance patterns can be exploited during reconstructions.
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Many improvements can be made to fluorescence microscopes by modifying a standard

instrument, taking multiple images, then combining the results optically or computation-

ally into a final result. In 1957, Minsky demonstrated the first confocal design which

used scanned-spot illumination with a confocal pinhole to remove light from out-of-focus

planes [87, 88]. The confocal fluorescence microscope was the first to create optically sectioned

images, and this property enabled many applications in material science and biology [89, 90].

Although confocal microscopes are still the workhorse of microscopy core facilities, the

scanned spot bathes the entire sample in damaging light and the pinhole blocks a large

fraction of the emissions. One way to reduce the light dose is to replace the pinhole with a

detector then computationally [91–93] or optically [94] combine the images into a final result.

A different option is to illuminate the sample with a light sheet that only illuminates in-focus

regions of the sample [95, 96]. Light-sheet microscopes found their quintessential application

in developmental biology where long imaging experiments require extremely low illumination

levels to keep the sample alive [97, 98]. Light-sheet imaging systems generate optically

sectioned images, but the resolution is still poor along the detection optical axis. Therefore,

multiview light sheets with isotropic spatial resolution were developed [99, 100]. Many

multiview light-sheet microscopes image samples in a cuvette, which creates a major barrier

for many model organisms. To image specimens with isotropic resolution on a coverslip, the

dual-view inverted selective plane illumination microscope (diSPIM) was developed [101] and

later extended to exploit a third [102] and (effective) fourth view [103]. Researchers continue

to search for illumination strategies that minimize the light dose to the sample: lattice light

sheet designs reduce the peak irradiance, which decreases bleaching [104], and field synthesis

approaches provide flexibility to reduce bleaching rates even further [105].

In chapter 5, we describe how we have outfitted the diSPIM instrument with polarized il-

lumination to create the first instrument that can measure the three-dimensional position and

orientation of densely labeled fluorescent molecules. Two reports of light-sheet anisotropy
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imaging have appeared in the literature [106, 107], but anisotropy is a rotation-variant quan-

tity so these instruments have not fully sampled the underlying signals.

In the same way that single-molecule studies do not require polarizing filters to recover

molecular orientations, polarization filters are not necessary to recover all of the available

angular information from densely labeled fluorescent samples. For this reason, we feel justi-

fied in dropping the word “polarized” and naming the class of techniques discussed in this

dissertation spatio-angular fluorescence microscopy. The position and orientation of fluores-

cent ensembles is encoded in every fluorescence microscopy image, and our goal is to design

systems that can measure this information in an invertible way.

1.3 Background: Image science

Image science is a field that attempts to improve imaging systems in a principled way.

The standard approach is to start with a task—usually a decision or estimation task—

then optimize the imaging system to achieve that task. The major thread of research in

image science has consisted of finding ways to objectively define these tasks and measure the

performance of imaging systems at achieving them.

Early image science monographs restricted their attention to two-dimensional imaging

with film detectors [108, 109]. By studying the complete imaging chain in parts and as a

whole—deterministic image formation, noise, detection, and decision making—these works

laid an early foundation for defining and evaluating image quality. Later works began to

expand to three-dimensional imaging including SPECT imaging systems [110].

The essential work on image science is Barrett and Myers’ book Foundations of Image

Science [1]. This work provides a general linear systems approach to modeling imaging

systems, to modeling their noise properties, to making decisions based on their results,

and to evaluating and improving their design. This book sparked so many of the ideas in

this dissertation that many parts of it are nearly prerequisite. For essential reading that
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is used directly throughout this dissertation, we recommend chapter 1 and chapter 7. For

intermediate topics that are used regularly including Fourier analysis, physical modeling, and

inverse problems, we recommend chapters 2, 3, 4, 9, and 15. For advanced topics including

almost all of the group theory used in this work, we recommend chapters 6 and 7.2.8–7.2.10.

Foundations provides a set of insights and mathematical tools that we use throughout this

dissertation to analyze spatio-angular imaging systems. The first major insight is that objects

and images can be represented as members of infinite- and finite-dimensional vector spaces,

respectively. Before doing anything else, the imaging system designer should understand

their object and data spaces—what is the “shape” and dimensionality of the data, and what

exactly are we trying to reconstruct? Next, an imaging system can be represented as a

mapping between these vector spaces, and studying this mapping, its null space, and its

symmetries can provide deep insights into the imaging system’s behavior. If the mapping is

linear, then the singular value decomposition (SVD) of the imaging operator is the tool of

choice since it can show us the measurement space, null space, and what we can reconstruct

without applying any priors. In this dissertation we calculate the SVD for many different

spatio-angular imaging systems to help us understand if our designs achieve physical limits.

1.4 Dissertation themes

Several themes appear throughout this dissertation:

• Spatio-angular fluorescence microscopy unifies polarized fluorescence spec-

troscopy, microscopy, and image science. We construct a mathematical framework

that combines the essential elements of all three fields to design optimal spatio-angular

fluorescence instruments.

• Geometry first, symmetry second, basis third. Choosing the correct geometry for

object space and data space, understanding the symmetries of the imaging system, then
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choosing a basis that exploits the symmetries pays enormous dividends. Every imaging

system we analyze follows this path.

• Spatio-angular imaging is approximately linear. General spatio-angular imaging

problems are non-linear, but we find the specific conditions under which the imaging

process is linear and pursue designs under these conditions.

• Spatio-angular, not spatial and angular. Microscopy is primarily spatial, and po-

larized fluorescence spectroscopy is primarily angular. Existing approaches to polarized

fluorescence microscopy have taken a “spatial and angular” approach that leaves informa-

tion on the table. A combined spatio-angular approach to modeling and reconstruction

leads to the best results.

• Design to the limit. Whenever possible, we find the physical limits that the imaging

system faces before developing designs that saturate these limits.

1.5 Chapter descriptions

• Chapter 2 introduces the basic elements of the theory of spatio-angular imaging sys-

tems, including spatio-angular point-spread functions and spatio-angular transfer func-

tions. This chapter is a minimally modified version of the paper Spatio-angular fluores-

cence microscopy I. Basic theory, which appeared in the Journal of the Optical Society

of America A [111].

• Chapter 3 applies spatio-angular imaging theory to the simplest possible optical system—

a paraxial 4f system. Approximations in this chapter yield closed-form expressions for

many relevant point-spread functions and transfer functions. This chapter is a mini-

mally modified version of the paper Spatio-angular fluorescence microscopy II. Paraxial

4f imaging, which appeared in the Journal of the Optical Society of America A [112].
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• Chapter 4 completes the forward model for single-view polarized illumination microscopes

with unobstructed high-NA detection paths. We calculate the effects of constrained an-

gular diffusion, polarized excitation, and high-NA objectives, and we find closed-form so-

lutions in several experimentally relevant parameter spaces. This chapter is under review

at the Journal of the Optical Society of America A under the name Spatio-angular fluo-

rescence microscopy III. Constrained angular diffusion, polarized excitation, and high-NA

imaging [113].

• Chapter 5 formulates a general spatio-angular fluorescence inverse problem, finds the con-

ditions under which this inverse problem is linear, and describes a practical and efficient

reconstruction algorithm based on the singular value decomposition. As a bonus, we

find a class of optimal sampling schemes for single-view spatio-angular microscopes. This

chapter is in preparation for submission.

• Chapter 6 uses the single-view model from chapter 4 as a building block to model and

optimize a novel polarized light-sheet illumination dual-view microscope. We include

reconstructions of two samples that give clear evidence that this instrument is the first

to recover the three-dimensional position and orientation of densely labeled fluorescent

molecules. This chapter is in preparation for submission as part of a larger project.

• Chapter 7 presents models and reconstruction algorithms for emerging spatio-angular mi-

croscopes including structured illumination, split-aperture, split-polarization, and light-

field microscopes. We compare these designs and speculate on optimal combinations.

• Chapter 8 summarizes what we have learned and speculates on how basic scientists might

exploit spatio-angular microscopy to ask and answer fundamentally new questions in

biology.
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CHAPTER 2

BASIC THEORY

Let no one who cannot think geometrically enter.
—Above the entrance to Plato’s Academy (circa 350 BC)

We introduce the basic elements of a spatio-angular theory of fluorescence microscopy,

providing a unified framework for analyzing systems that image single fluorescent

dipoles and ensembles of overlapping dipoles that label biological molecules. We model

an aplanatic microscope imaging an ensemble of fluorescent dipoles as a linear Hilbert-space

operator, and we show that the operator takes a particularly convenient form when expressed

in a basis of complex exponentials and spherical harmonics—a form we call the dipole spatio-

angular transfer function. We discuss the implications of our analysis for all quantitative

fluorescence microscopy studies and lay out a path towards a complete theory.

2.1 Introduction

Fluorescence microscopes are widely used in the biological sciences for imaging fluorescent

molecules that label specific proteins and biologically important molecules. While most

fluorescence microscopy experiments are designed to measure only the spatial distribution of

fluorophores, a growing number of experiments seek to measure both the spatial and angular

distributions of fluorophores by the use of polarizers [46, 51, 67, 114, 115] or point spread

function engineering [85, 116].

Meanwhile, single-molecule localization microscopy (SMLM) experiments use spatially

sparse fluorescent samples to localize single molecules with precision that surpasses the

diffraction limit. Noise limits the precision of this localization [117, 118], and several studies

have shown that model mismatch (e.g. ignoring the effects of vector optics, dipole orienta-

tion [77], and dipole rotation [76]) can introduce localization bias as well. Therefore, the
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most precise and accurate SMLM experiments must use an appropriate model and jointly

estimate both the position and orientation of each fluorophore. Several studies have suc-

cessfully used vector optics and dipole models to estimate the position and orientation of

single molecules [71, 72, 74, 119, 120], and there is growing interest in designing optical sys-

tems for measuring the position, orientation, and rotational dynamics of single molecules

[78, 80, 84, 85, 116].

While many studies have focused on improving imaging models for spatially sparse flu-

orescent samples, we consider the more general case and aim to improve imaging models

for arbitrary samples including those containing ensembles of fluorophores within a resolv-

able volume. In particular, we examine the effects of two widely used approximations in

fluorescence microscopy—the monopole approximation and the scalar approximation.

We use the term monopole to refer to a model of a fluorescent object that treats it as an

isotropic absorber/emitter. Although the term monopole approximation is not in widespread

use, we think it accurately describes the way many models of fluorescence microscopy treat

fluorescent objects, and we use the term to distinguish the monopole model from more real-

istic dipole and higher-order models. Despite their use in models, electromagnetic monopole

absorber/emitters do not exist in nature. All physical fluorescent objects absorb and emit

radiation with dipole or higher-order moments, and these moments are always oriented in

space. For a classical mental model of fluorescent objects we imagine each dipole as a small

oriented antenna where electrons are constrained to move along a single direction.

All fluorescence microscopy models that use an optical point spread function or an opti-

cal transfer function to describe the propagation of light through the microscope implicitly

make the monopole approximation. The optical point spread function is the irradiance re-

sponse of an optical system to an isotropic point source, so it cannot model the response

due to an anisotropic dipole radiator. In this chapter we define monopole and dipole trans-

fer functions that describe the mapping between fluorescent emissions and the measured
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irradiance. Although optical systems are an essential part of microscopes, fluorescence mi-

croscopists are interested in measuring the properties of fluorophores (not optics), so the

monopole and dipole transfer functions are more directly useful than the optical transfer

function for the problems that fluorescence microscopists are interested in solving.

While the monopole approximation applies to the fluorescent object, the scalar approx-

imation applies to the fields that propagate through the microscope. Modeling the electric

fields in a region requires a three-dimensional vector field, but if the electric fields are ran-

dom or completely parallel to one another, a scalar field is sufficient, and we can replace the

vector-valued electric field, E, with a scalar-valued field, U .

The scalar approximation is often made together with the monopole approximation. For

example, the Born–Wolf model [121] and the Gibson–Lanni model [122] make both the

monopole and scalar approximations when applied to fluorescence microscopes. However,

some models make the monopole approximation but not the scalar approximation. For

example, the Richards–Wolf model [123] considers the role of vector-valued fields in the

optical system, but it is implicitly an optical model so when it is applied to fluorescence

microscopes the monopole approximation is assumed.

This work lies at the intersection of three subfields of fluorescence microscopy: (1) spatial

ensemble imaging where each resolvable volume contains many fluorophores and the goal is

to find the concentration of fluorophores as a function of position in the sample, (2) spatio-

angular ensemble imaging where each resolvable volume contains many fluorophores and the

goal is to find the concentration and average orientation of fluorophores as a function of

position in the sample, and (3) SMLM imaging where fluorophores are sparse in the sample

and the goal is to find the position and orientation of each fluorophore. We briefly review

how these three subfields use the monopole and scalar approximations.

The large majority of fluorescence microscopes are used to image ensembles of fluo-

rophores, and most existing modeling techniques make use of the monopole approximation,
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the scalar approximation, or both. As discussed above, the Gibson–Lanni model, the Born–

Wolf model, and the Richards–Wolf model are approximate when applied to fluorescence

microscopy data because they only model monopole emitters. Deconvolution algorithms

that use these models may make biased estimates of fluorophore concentrations since they

ignore the dipole excitation and emission of fluorophores.

A small but growing group of microscopists is interested in measuring the orientation

and position of ensembles of fluorophores [46, 51, 67, 114, 115]. These techniques typically

use polarizers to make multiple measurements of the same object with different polarizer

orientations, then they use a model of the dipole excitation and emission processes [63] to

recover the orientation of fluorophores using pixel-wise arithmetic. Although these studies do

not adopt the scalar or monopole approximations for the angular part of the problem, they

adopt both approximations when they consider the spatial part of the problem. Existing

works either ignore the spatial reconstruction problem [46, 51, 67, 114] or assume that the

spatial and angular reconstruction problems can be solved sequentially [115].

The most precise experiments in SMLM imaging do not adopt the scalar or monopole

approximations. Many works have applied dipole models with vector optics, and several

works have considered the effects of rotational and spatial diffusion on the images of single

molecules [66, 82, 85, 124, 125]. We will see that the dipole transfer functions are useful tools

for incorporating angular and spatial diffusion into SMLM simulations and reconstructions.

In this chapter we begin to place these three subfields on a common theoretical footing.

First, in section 2.2, we consider arbitrary fluorescence imaging models and lay out a plan

for developing a model for spatio-angular imaging. In section 2.3 we review the familiar

monopole imaging model, and in section 2.4 we extend the model to dipoles. Finally, in

section 2.5 we discuss the results and their broader implications.

In this chapter we focus on modeling a single-view fluorescence microscope with neither

polarized excitation nor detection. In subsequent chapters of this dissertation we will extend
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our models to include polarized excitation, polarized detection, and multi-view microscopes.

Additionally, we have restricted this chapter to the forward problem—the mapping between

a known object and the data. In later chapters we will consider the inverse problem, and

the singular value decomposition (SVD) will play a central role.

2.2 Theory

We begin our analysis with the abstract Hilbert space formalism of Barrett and Myers [1,

ch. 1.3]. Our first task is to formulate the imaging process as a mapping between two

Hilbert spaces H : U→ V, where U is a set that contains all possible objects, V is a set that

contains all (possibly noise-corrupted) datasets, and H is a model of the instrument that

maps between these two spaces. We denote (possibly infinite-dimensional) Hilbert-space

vectors in U with f , Hilbert-space vectors in V with g, and the mapping between the spaces

with

g = Hf . (2.1)

Throughout this dissertation we will use the letters g, h, and f with varying fonts, capital-

izations, and arguments to represent the data, the instrument, and the object, respectively.

Once we have identified the spaces U and V, we can start expressing the mapping between

the spaces in a specific object-space and data-space basis. In most cases the easiest mapping

to find uses a delta-function basis—we expand object and data space into delta functions,

then express the mapping as an integral transform. After finding this mapping we can start

to investigate the same mapping in different bases.

The above discussion is quite abstract, but it is a powerful point of view that will en-

able us to unify the analysis of spatio-angular fluorescence imaging. In section 2.3 we will

demonstrate the formalism by examining a familiar monopole imaging model, and we will
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demonstrate the mapping between object and data space in two different bases. In section

2.4 we will extend the monopole imaging model to dipoles and examine the mapping in four

different bases.

2.3 Monopole imaging

We start by modeling the imaging process for a field of dynamic fluorescent monopoles. We

have split our model into two pieces: (1) the dynamics of excitation, decay, and diffusion

processes, and (2) the emission and detection processes. This section treads familiar ground,

but it serves to establish the concepts and notation that will be necessary when we extend

to the dipole case.

2.3.1 Monopole dynamics

We begin by considering a spatial distribution of monopoles that can occupy just two states—

a ground state and an excited state. We use f (gr)(ro, t) to represent the number of monopoles

in the ground state at position ro per unit volume at time t per unit time. Similarly, we use

f (ex)(ro, t) to represent the number of monopoles in the excited state.

Next, we describe all of the transitions between states. If we excite the monopoles with

an illumination pattern that is uniform in space and time, then the rate of excitation will

be the product of an excitation constant κ(ex) with the number of monopoles in the ground

state. Similarly, the rate of molecules decaying from the excited state to the ground state

will be the product of a decay constant κ(d) with the number of monopoles in the excited

state (assuming that stimulated emission is negligible).

Finally, we describe the effect of diffusion within each state. If the diffusion is homo-

geneous (independent of position) and isotropic (independent of direction) then the rate of

change of the spatial distribution will be proportional to a diffusion constant DR multi-

plied by the Laplacian operator ∆R3 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 acting on the spatial distribution of
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monopoles at that point.

Bringing the effects of excitation, decay, and diffusion together yields a pair of coupled

partial differential equations

∂f (gr)(ro, t)
∂t

= −κ(ex)f (gr)(ro, t) + κ(d)f (ex)(ro, t) +DR∆R3f (gr)(ro, t), (2.2)

∂f (ex)(ro, t)
∂t

= κ(ex)f (gr)(ro, t)− κ(d)f (ex)(ro, t) +DR∆R3f (ex)(ro, t). (2.3)

Equations (2.2) and (2.3) serve as a minimal model of monopole dynamics, and these equa-

tions can be generalized to model a broad class of fluorescence imaging techniques. For exam-

ple, space- and time-varying excitation patterns κ(ex)(ro, t) are useful for modeling structured

illumination microscopes (SIM); space- and time-varying decay constants κ(d)(ro, t) are of

interest in fluorescence lifetime imaging microscopy (FLIM); space-, time-, and direction-

varying (tensor-valued) diffusion coefficients are of interest in diffusion imaging; and extra

states and transitions can be added to model single-molecule techniques, stimulated emis-

sion and depletion (STED) techniques, Forster resonance energy transfer (FRET), and pho-

tobleaching.

2.3.2 Monopole detection

Next, we model the monopole emission and detection processes independent of the underlying

dynamics. In our simple two-state model we can only measure the photons radiated during

transitions from the excited state to the ground state, which occur at a rate κ(d)f (ex)(ro, t).

If we expose a detector for a period te, then the most we can hope to recover from our data

without knowing more about the dynamics of the system is the quantity

f(ro) =
∫ te

0
dt κ(d)f (ex)(ro, t). (2.4)
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The function f(ro) represents the number of monopole emissions during the exposure time

from position ro per unit volume. A complete name for f(ro) would be the time-integrated

monopole emission density rate, but for brevity we will refer to it as the monopole emission

density.

We identify the set of all possible monopole emission densities as our object space U =

L2(R3)—the set of square-integrable functions in three-dimensional space. If we measure the

irradiance on a two-dimensional detector then data space is V = L2(R2) and the data can be

represented by a function g′(r′d) called the irradiance—the power received by a surface per

unit area at position r′d. Note that we have adopted a slightly unusual convention of using

primes to denote unscaled coordinates. Later in this section we will introduce unprimed

scaled coordinates that we will use throughout the rest of the dissertation.

A reasonable starting point is to assume that the relationship between the object and

the data is linear—this is true in many fluorescence microscopes because fluorophores emit

incoherently, so a scaled sum of emissions result in a scaled sum of the irradiance patterns

created by the individual emissions.

If the mapping is linear, we can write the irradiance as a weighted integral over the

monopole emission density

g′(r′d) =
∫
R3
dro h

′(r′d, ro)f(ro), (2.5)

where h′(r′d, ro) is the irradiance at two-dimensional position r′d (roman font) created by a

point source at three-dimensional position ro (gothic font).

Next, we assume that the optical system is aplanatic—Abbe’s sine condition is satisfied

and on-axis points are imaged without aberration. Abbe’s sine condition guarantees that

off-axis points are imaged without spherical aberration or coma [27, ch. 1], so the imaging

system can be modeled within the field of view of the optical system as a transverse magnifier

with shift-invariant blur. We split the three-dimensional object coordinate ro into a two-
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dimensional transverse coordinate r⊥o and a one-dimensional axial coordinate ro to write the

forward model as

g′(r′d) =
∫
R
dro

∫
R2
dr⊥o h′(r′d −mr⊥o , ro)f(r⊥o , ro), (2.6)

where m is a transverse magnification factor. Note that non-paraxial imaging systems that

satisfy Abbe’s sine condition cannot simultaneously satisfy the Herschel condition when

m 6= 1 [126, 127], so non-paraxial magnifying imaging systems cannot be shift-invariant in

three dimensions. For paraxial imaging systems the Abbe sine and Herschel conditions are

approximately the same, and the imaging system can be described as approximately shift

invariant in three dimensions.

We can simplify our analysis by changing coordinates and writing Eq. (2.6) as a transverse

convolution [1, ch. 7.2.7]. We define a demagnified detector coordinate rd = r′d/m and a

normalization factor that corresponds to the total power incident on the detector plane due

to an in-focus point source Pmono =
∫
R2 drh′(mr, 0) where r = rd−r⊥o . We use these scaling

factors to define the monopole point spread function as

h(rd − r⊥o , ro) = h′(m[rd − r⊥o ], ro)
Pmono

, (2.7)

and the scaled irradiance as

g(rd) = g′(mrd)
Pmono

. (2.8)

With these definitions we can express the mapping between the object and the data as a

familiar transverse convolution

g(rd) =
∫
R
dro

∫
R2
dr⊥o h(rd − r⊥o , ro)f(r⊥o , ro). (2.9)
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We have chosen to normalize the monopole point spread function so that

∫
R2
drh(r, 0) = 1. (2.10)

The monopole point spread function corresponds to a measurable irradiance, so it is always

real and positive.

The mapping between the object and the data in a linear shift-invariant imaging system

takes a particularly simple form in a complex exponential (i.e. Fourier) basis. If we apply

the Fourier convolution theorem to Eq. (2.9) we find that

G(ν) =
∫
R
dro H(ν, ro)F (ν, ro), (2.11)

where we define the scaled irradiance spectrum as

G(ν) =
∫
R2
dr g(r) exp(−2πir · ν), (2.12)

the monopole transfer function as

H(ν, ro) =
∫
R2
drh(r, ro) exp(−2πir · ν), (2.13)

and the monopole spectrum as

F (ν, ro) =
∫
R2
dr f(r, ro) exp(−2πir · ν). (2.14)

The monopole point spread function is normalized and real, so we know that the monopole

transfer function is normalized,H(0, 0) = 1, and conjugate symmetric,H(−ν, 0) = H∗(ν, 0),

where z∗ denotes the complex conjugate of z.

Notice that Eqs. (2.9) and (2.11) are expressions of the same mapping between object
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Figure 2.1: The mapping between the object and data space of a monopole fluorescence
microscope can be computed in two different bases—a delta function basis and a complex
exponential basis. The change of basis can be computed with a two-dimensional Fourier
transform denoted FR2 . Gray highlighting indicates which part of each expression is being
named.

and data space in different bases. Figure 2.1 summarizes the relationship between object

and data space in both bases.

We have been careful to use the termmonopole transfer function instead of the commonly-

used term optical transfer function. We reserve the term optical transfer function for optical

systems—the optical transfer function maps between an input irradiance spectrum and an

output irradiance spectrum in an optical system. We can use optical transfer functions to

model the propagation of light through a microscope, but ultimately we are always interested

in the object, not the light emitted by the object. We will find the distinction between the

optical transfer function and the object transfer function to be especially valuable when we

consider dipoles in section 2.4.
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2.3.3 Monopole coherent transfer functions

Although the Fourier transform can be used to calculate the monopole transfer function

directly from the monopole point spread function, there is a well-known alternative that

exploits coherent transfer functions. The key idea is that the monopole point spread function

can always be written as the absolute square of a scalar-valued monopole coherent spread

function, c(rd − r⊥o , ro), defined by

|c(rd − r⊥o , ro)|2 = h(rd − r⊥o , ro). (2.15)

Physically, the monopole coherent spread function corresponds to the scalar-valued electro-

magnetic field on the detector with appropriate scaling.

We can plug Eq. (2.15) into Eq. (2.13) and use the autocorrelation theorem to rewrite

the monopole transfer function as

H(ν, ro) =
∫
R2
dτ C(τ , ro)C∗(τ − ν, ro), (2.16)

where we have introduced the monopole coherent transfer function as the two-dimensional

Fourier transform of the monopole coherent spread function:

C(τ , ro) =
∫
R2
dr c(r, ro) exp[−2πir · τ ]. (2.17)

Physically, the monopole coherent transfer function corresponds to the scalar-valued field in

a Fourier plane of the detector with appropriate scaling.

The coherent transfer function provides a valuable shortcut for analyzing microscopes

since it is often straightforward to calculate the field in a Fourier plane of the detector.

A typical approach for calculating the transfer functions is to (1) calculate the field in a

Fourier plane of the detector, (2) scale the field to find the monopole coherent transfer
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Figure 2.2: The monopole transfer functions are related by a two-dimensional Fourier trans-
form (right column). The coherent monopole transfer functions (left column) can be used
to simplify the calculation of the remaining transfer functions.

function, then (3) use the relationships in Fig. 2.2 to calculate the other transfer functions.

2.4 Dipole imaging

Now we consider a microscope imaging a field of dipoles by recording the irradiance on a

two-dimensional detector. Similar to the monopole case, we split our model in two pieces: a

dynamics model and an imaging model.

2.4.1 Dipole dynamics

We consider a distribution of dipoles that can occupy a ground state and an excited state.

A function that assigns a real number to each point in space ro and time t is not enough

to specify a dynamic field of dipoles because the dipoles can have different orientations.

Therefore, we introduce an orientation coordinate ŝo and use the function f (gr)(ro, ŝo, t) to

represent the number of dipoles in the ground state at position ro per unit volume oriented

along ŝo per steradian at time t per unit time. Similarly, we use f (ex)(ro, ŝo, t) to represent

the number of dipoles in the excited state.
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We can model the transitions between states in the same way that we did with monopoles.

If we excite the dipoles with an illumination pattern that is uniform in space, orientation, and

time, then the rate of excitation will be κ(ex)f (gr)(ro, ŝo, t). Similarly, the rate of decay from

the excited state to the ground state will be κ(d)f (ex)(ro, ŝo, t) (assuming that stimulated

emission is negligible).

We can model homogeneous and isotropic spatial diffusion in the same way that we did

for monopoles—the rate of change of the spatial distribution will be the product of a spatial

diffusion coefficient DR multiplied by the Laplacian ∆R3 acting on the dipole distribution at

that point. Similarly, if angular diffusion is homogeneous (independent of orientation ŝo) and

isotropic (independent of angular diffusion direction) then the rate of the change of angular

distribution will be the product of an angular diffusion coefficient DS multiplied by the

spherical Laplacian ∆S2 acting on the dipole distribution at that orientation. If we choose a

set of spherical coordinates ŝo = (θ, φ) where θ is the inclination angle and φ is the azimuthal

angle, then the spherical Laplacian takes the form ∆S2 = 1
sin2 θ

∂2

∂φ2 + 1
sin θ

∂
∂θ

(
sin θ ∂∂θ

)
.

Bringing everything together yields a pair of coupled partial differential equations

∂f (gr)(ro ,̂so,t)
∂t

= −κ(ex)f (gr)(ro, ŝo,t) + κ(d)f (ex)(ro ,̂so,t) +DR∆R3f (gr)(ro ,̂so,t) (2.18)

+DS∆ S2f (gr)(ro ,̂so,t),

∂f (ex)(ro ,̂so,t)
∂t

= κ(ex)f (gr)(ro ,̂so,t)− κ(d)f (ex)(ro ,̂so,t) +DR∆R3f (ex)(ro ,̂so,t) (2.19)

+DS∆ S2f (ex)(ro ,̂so,t).

Variants of Eqs. (2.18) and (2.19) can be used to model a wide range of more realistic dynam-

ics. For example, a space-, orientation-, and time-varying excitation pattern κ(ex)(ro, ŝo, t)

can be used to model spatio-angular structured illumination patterns. Specifically, an

orientation-dependent excitation pattern can be used to model selective excitation with po-

larized light. There is also the possibility of modeling space-, orientation-, and time-varying
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decay constants and diffusion constants.

Finally, we note that many fluorescent molecules have excitation and emission dipole

moments that are not collinear. We can model these types of molecules by choosing the

orientation coordinate ŝo to be along the emission dipole moment, then accounting for the

excitation moment in the excitation rate function κ(ex)(ro, ŝo, t).

2.4.2 Dipole detection

Next, we model the dipole emission and detection processes independent of the underlying

dynamics. We can only measure photons radiated during transitions from the excited state

to the ground state, which occur at rate κ(d)f (ex)(ro, ŝo, t). If we expose a detector for a

period te then the most we can hope to recover from our data without knowing more about

the underlying dynamics is the quantity

f(ro, ŝo) =
∫ tdet

0
dt κ(d)f (ex)(ro, ŝo, t). (2.20)

The function f(ro, ŝo) represents the number of dipole emissions during the exposure time

from position ro per unit volume and orientation ŝo per unit steradian. A complete name for

f(ro, ŝo) would be the time-integrated dipole emission density rate, but for brevity we will

refer to it as the dipole emission density. We identify the set of all possible dipole emission

densities as our object space U = L2(R3 × S2)—the set of square-integrable functions on

the product space of a volume and a two-dimensional spherical surface (the usual spherical

surface embedded in R3). To visualize functions in object space we imagine a sphere at every

point in a three-dimensional volume with a scalar value assigned to every surface point on

each sphere.

Predicting the dipole emission density for a specific experiment requires (1) a model of

the underlying dynamics (a variant of Eqs. (2.18) and (2.19)), (2) a set of initial/boundary
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conditions, (3) a solution of the coupled partial differential equations f (ex)(ro, ŝo, t) (either

an analytic or a numerical solution), then (4) the computation of the dipole emission density

using Eq. (2.20). In Appendix 2.8 we demonstrate this procedure for an experiment with an

instantaneous excitation pulse.

Similar to the monopole case, we model the mapping between the object and the irradi-

ance as an integral transform

g′(r′d) =
∫
S2
dŝo

∫
R3
dro h

′(r′d, ro, ŝo)f(ro, ŝo), (2.21)

where h′(r′d, ro, ŝo) is the irradiance at position r′d created by a point source at ro with

orientation ŝo. Notice that we have considered all possible orientations ŝo and integrated

over the sphere S2. The dipole emission density is always symmetric under angular inversion,

f(ro, ŝo) = f(ro,−ŝo), so we could have chosen to integrate over a hemisphere and adjusted

the definition of the dipole emission density by a factor of two. For convenience we will

continue to integrate over the complete sphere. We note that all functions in this chapter

with ŝo as an independent variable are symmetric under angular inversion, ŝo → −ŝo.

If the optical system is aplanatic, then we can split the three-dimensional object coor-

dinate ro into a transverse coordinate r⊥o and an axial coordinate ro and write the forward

model as

g′(r′d) =
∫
S2
dŝo

∫
R
dro

∫
R2
dr⊥o h′(r′d −mror⊥o , ro , ŝo)f(r⊥o , ro , ŝo). (2.22)

We define the same demagnified detector coordinate rd = r′d/m and a new normalization

factor that corresponds to the total power incident on the detector due to an in-focus spatial

point source with an angularly uniform distribution of dipoles

Pdip =
∫
S2
dŝo

∫
R2
drh′(mr, 0, ŝo).
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We use these scaling factors to define the dipole point spread function as

h(rd − r⊥o , ro , ŝo) = h′(m[rd − r⊥o ], ro , ŝo)
Pdip

, (2.23)

and the scaled irradiance as

g(rd) = g′(mrd)
Pdip

. (2.24)

With these definitions we can express the mapping between the object and the data as

g(rd) =
∫
S2
dŝo

∫
R
dro

∫
R2
dr⊥o h(rd − r⊥o , ro , ŝo)f(r⊥o , ro , ŝo). (2.25)

Equation (2.25) is a key result because it represents the mapping between object space and

data space in a delta function basis. The integrals in Eq. (2.25) would be extremely expensive

to compute for an arbitrary object, but the integrals simplify to an efficient sum if the object

is spatially and angularly sparse. For example, Eq. (2.25) would reduce to a superposition

of dipole point spread functions if the object consisted of immobile dipole emitters.

Similar to the monopole case, we have chosen to normalize the dipole point spread func-

tion so that

∫
S2
dŝo

∫
R2
drh(r, 0, ŝo) = 1. (2.26)

The dipole point spread function is a measurable irradiance, so it is real and positive.
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2.4.3 Dipole spatial transfer function

We can make our first change of basis by applying the Fourier-convolution theorem to Eq.

(2.25), which yields

G(ν, ro) =
∫
S2
dŝo

∫
R
dro H(ν, ro , ŝo)F (ν, ro , ŝo), (2.27)

where we define the dipole spatial transfer function as

H(ν, ro , ŝo) =
∫
R2
drh(r, ro , ŝo) exp(−2πir · ν), (2.28)

and the dipole spatial spectrum as

F (ν, ro , ŝo) =
∫
R2
dr f(r, ro , ŝo) exp(−2πir · ν). (2.29)

Since the dipole point spread function is normalized and real, we know that the dipole

spatial transfer function is normalized,
∫
S2 dŝH(0, 0, ŝo) = 1, and conjugate symmetric,

H(−ν, 0, ŝo) = H∗(ν, 0, ŝo).

This basis is efficient for simulating and analyzing objects that are angularly sparse and

spatially dense; e.g. rod-like structures that contain fluorophores in a fixed orientation, or

rotationally fixed fluorophores that are undergoing spatial diffusion.

2.4.4 Dipole angular transfer function

The spherical harmonics are another set of convenient basis functions that play the same role

as complex exponentials in spatial transfer functions—see Appendix 2.7 for an introduction

to the spherical harmonics. We can change basis from spherical delta functions to spherical
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harmonics by applying the generalized Plancherel theorem for spherical functions

∫
S2
dŝ p(̂s)q∗(̂s) =

∞∑
`=0

∑̀
m=−`

Pm` Q
m∗
` , (2.30)

where p(̂s) and q(̂s) are arbitrary functions on the sphere, Pm` and Qm` are their spherical

Fourier transforms defined by

Pm` =
∫
S2
dŝ p(̂s)Ym∗` (̂s), (2.31)

and Ym` (̂s) are the spherical harmonic functions defined in Appendix 2.7. Equation (2.30)

expresses the fact that scalar products are invariant under a change of basis [1, Eq. 3.78]. The

left-hand side of Eq. (2.30) is the scalar product of L2(S2) functions in a delta function basis

and the right-hand side is the scalar product of L2(S2) functions in a spherical harmonic

function basis. Applying Eq. (2.30) to Eq. (2.25) yields

g(rd) =
∞∑
`=0

∑̀
m=−`

∫
R
dro

∫
R2
dr⊥o Hm

` (rd − r⊥o , ro)Fm` (r⊥o , ro), (2.32)

where we have defined the dipole angular transfer function as

Hm
` (rd − r⊥o , ro) =

∫
S2
dŝo h(rd − r⊥o , ro , ŝo)Ym∗` (̂so), (2.33)

and the dipole angular spectrum as

Fm` (r⊥o , ro) =
∫
S2
dŝo f(r⊥o , ro , ŝo)Ym∗` (̂so). (2.34)

Since the dipole point spread function is normalized and real, we know that the dipole angular

transfer function is normalized,
∫
R2 drH0

0 (r, 0) = 1, and conjugate symmetric, H−m` (r, 0) =

(−1)mHm∗
` (r, 0).
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This basis is efficient for simulating and analyzing objects that are spatially sparse and

angularly dense; e.g. single fluorophores that are undergoing angular diffusion, or many

fluorophores that are within a resolvable volume with varying orientations.

2.4.5 Spatio-angular dipole transfer function

We can arrive at our final basis in two ways: by applying the generalized Plancherel theorem

for spherical functions to Eq. (2.27) or by applying the Fourier convolution theorem to

Eq. (2.32). We follow the first path and find that

G(ν, ro) =
∞∑
`=0

∑̀
m=−`

∫
R
dro Hm` (ν, ro)Fm` (ν, ro), (2.35)

where we have defined the dipole spatio-angular transfer function as

Hm` (ν, ro) =
∫
S2
dŝoH(ν, ro , ŝo)Ym∗` (̂so), (2.36)

and the dipole spatio-angular spectrum as

Fm` (ν, ro) =
∫
S2
dŝo F (ν, ro , ŝo)Ym∗` (̂so). (2.37)

Since the dipole point spread function is normalized and real, we know that the dipole

spatio-angular transfer function is normalized, H0
0(0, 0) = 1, and conjugate symmetric,

H−m` (−ν, 0) = (−1)mHm∗` (ν, 0).

This basis is efficient for simulating and analyzing arbitrary samples because it exploits

the band limit of the imaging system. We note that most single molecule imaging experiments

are efficiently described in this basis because of the effects of spatial and rotational diffusion—

see Appendix 2.8 for an example.

Figure 2.3 summarizes the relationships between the four bases that we can use to com-
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pute the image of a field of dipoles. We reiterate that all four bases may be useful depending

on the sample.

2.4.6 Dipole coherent transfer functions

Similar to the monopole case, there is an efficient way to calculate the transfer functions

using coherent transfer functions. The dipole point spread function can always be written as

the absolute square of a vector-valued function, c(rd − r⊥o , ro , ŝo), called the dipole coherent

spread function:

|c(rd − r⊥o , ro , ŝo)|2 = h(rd − r⊥o , ro , ŝo). (2.38)

Physically, the dipole coherent spread function corresponds to the vector-valued electric field

on the detector with appropriate scaling. We need a vector-valued coherent transfer function

since the polarization of the field plays a significant role in dipole imaging, so the dipole point

spread function cannot be written as an absolute square of a scalar-valued function.

We can plug Eq. (2.38) into Eq. (2.28) and use the autocorrelation theorem to rewrite

the dipole spatial transfer function as

H(ν, ro , ŝo) =
∫
R2
dτ C(τ , ro , ŝo)C†(τ − ν, ro , ŝo), (2.39)

where we have introduced the dipole coherent transfer function C(τ , ro , ŝo) as the two-

dimensional Fourier transform of the dipole coherent spread function:

C(τ , ro , ŝo) =
∫
R2
dr c(r, ro , ŝo) exp[−2πir · τ ]. (2.40)

Physically, the dipole coherent transfer function corresponds to the vector-valued electric

field created by a dipole oriented along ŝo in a Fourier plane of the detector with appropriate
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,ŝ

o
)
F
(ν

,r
o
,ŝ
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Dipole coherent
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Dipole coherent
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∫
R2 dτ C(τ , ro , ŝo)C

†(τ − ν, ro , ŝo)

FR2FR2

FS2

FR2

Figure 2.4: There is one transfer function for each set of object-space basis functions, and
these transfer functions are related by two-dimensional and spherical Fourier transforms—
see center and right columns. There is an additional pair of coherent transfer functions that
are useful for calculating the transfer functions—see left column.

scaling. Similar to the monopole case, we can calculate the dipole-orientation-dependent

fields in a Fourier plane of the detector, scale appropriately to find the dipole coherent transfer

function, then use the relationships in Fig. 2.4 to calculate the other transfer functions.

Finally, we note that the dipole coherent transfer function is identical (up to scaling factors)

to what Agrawal et al. call the Green’s tensor [116] and Novotny and Hecht’s dyadic point

spread function multiplied by the dipole moment vector [73].

2.5 Discussion

2.5.1 When are alternative bases useful?

Describing a sample f , an imaging system H, or data g in a basis other than a delta function

basis is useful when the signal is sparse or band-limited in the new basis. Expressing a

signal in a sparser basis is particularly useful for improving intuition about the signal and

for reducing computation time.

Throughout this chapter we have emphasized examples of samples that are sparse in

alternative bases. For example, dipoles that are undergoing spatial and angular diffusion
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give rise to dipole emission densities that are sparse in a basis of complex exponentials and

spherical harmonics. In the next chapter we describe how a common imaging system—a

single-view aplanatic microscope—can be described sparsely in the same basis, and this will

lead us to a natural definition of the angular band-limit of the imaging system that augments

the widely known spatial band-limit.

2.5.2 Alternatives to the spherical harmonics

Throughout this chapter we have used the spherical harmonic functions as a basis for func-

tions on the sphere, but there are other basis functions that can be advantageous in some

cases. Several works [55, 80, 82, 84, 85, 119] have used the second moments of the Carte-

sian unit vectors in orientation space (or second moments for brevity) as basis functions for

the sphere because they arise naturally when computing the dipole point spread function.

These works use an alternative to the dipole angular transfer function that uses the second

moments as basis functions so the forward model can be written as

g(rd) =
6∑
j=1

∫
R
dro

∫
R2
dr⊥o Hj(rd − r⊥o , ro)Fj(r⊥o , ro), (2.41)

where

Hj(rd − r⊥o , ro) =
∫
S2
dŝo h(rd − r⊥o , ro , ŝo)Zj (̂so), (2.42)

Fj(r⊥o , ro) =
∫
S2
dŝo f(r⊥o , ro , ŝo)Zj (̂so), (2.43)

and Zj (̂s) = {s2
x, s

2
y, s

2
z, sxsy, sysz, sxsz} are the second moments. This formulation is con-

venient because it can exploit the spatial sparsity of the sample, the angular sparsity of

diffusing samples in the basis of second moments, and the angular band-limit of common

imaging systems. Additionally, the second moments approach does not require an expansion

of the dipole point spread function onto spherical harmonics.
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The spherical harmonics provide the same conveniences as the second moments: samples

undergoing angular diffusion can be efficiently described using the spherical harmonics, and

common imaging systems have an angular band-limit. Additionally, the spherical harmonics

provide several potential advantages over the second moments. First, the spherical harmon-

ics form a complete basis for functions on the sphere, while the second moments span a much

smaller function space. Descoteaux et al. show that the even order spherical harmonics up

to order ` and the degree-` homogeneous polynomials restricted to the sphere span the same
1
2(`+1)(`+2)-dimensional function space [128]. Therefore, the spherical harmonic basis can

be extended by adding an extra order of spherical harmonics to the existing set of spherical

harmonics. Meanwhile, extending the basis of homogeneous polynomials without redundant

basis vectors requires a completely new set of functions. Second, the spherical harmonics

are orthogonal, which will allow us to deploy invaluable tools from linear algebra—linear

subspaces, rank, SVD, etc.—to analyze and compare microscope designs. Finally, using the

spherical harmonics provides access to a set of fast algorithms. The naive expansion of an ar-

bitrary discretized N point spherical function onto spherical harmonics (or second moments)

requires a O(N2) matrix multiplication, while pioneering work by Driscoll and Healy [129]

showed that the forward discrete fast spherical harmonic transform can be computed with a

O(N(logN)2) algorithm and its inverse can be computed with a O(N3/2) algorithm. To our

knowledge no similarly fast algorithms exist for expansion onto the higher-order moments.

Zhang et al. [85] have used the second moments to optimize a phase mask that creates a

tri-spot point spread function. The authors formulate a system model as a 6×6 matrix that

maps the six second moments that describe a rotating single molecule to the six intensity

measurements from each lobe and polarization of the tri-spot point spread function. They

show that the measurement matrices for existing phase mask designs are rank 4 or 5, and

they implement a new rank 6 design that can measure all six second moments. The spherical

harmonics can be used to similar effect in this problem by rewriting the system matrix
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in a basis of spherical harmonics instead of second moments. Additionally, the spherical

harmonics form an orthogonal basis, so optimizing the system will be slightly easier (for

example, the Fisher information matrix will be diagonal in a spherical harmonic basis).

Backer et al. [130] have used the transverse second moments {s2
x, s

2
y, sxsy} to design a

polarized-excitation imaging system and reconstruction algorithm that can recover the trans-

verse distribution of fluorescent molecules. Similarly, Zhanghao et al. [115] have used the

circular harmonics to design a polarized structured illumination imaging system and recon-

struction scheme that can recover the transverse distribution of fluorescent molecules. The

transverse second moments and the circular harmonics share the same relationship as the

three-dimensional second moments and the spherical harmonics—each pair spans the same

function space but only the circular/spherical harmonics are orthogonal. The transverse

second moments and the circular harmonics are useful design tools for restricting the num-

ber of parameters to estimate, but these approaches artificially restrict the reconstructed

dipole distributions to the transverse plane. Finally, we note that the relationship between

2D and 3D estimation problems is slightly simpler in a second moment basis than a spheri-

cal/circular harmonic basis. In a second moment basis the six second moments that describe

the 3D problem can be truncated to the three second moments that describe the 2D prob-

lem. Meanwhile, the spherical harmonics that describe the 3D problem require a matrix

multiplication (not a truncation) to map to the circular harmonics.

The diffusion magnetic resonance imaging community uses both the second moments (or

second-order tensor) basis functions [131] and the spherical harmonic basis functions [132].

Descoteaux et al. have provided an explicit invertible transformation matrix to convert be-

tween the second moments and the zeroth- and second-order spherical harmonics [128]. Since

the transformation between these two bases is invertible, functions on the sphere can be de-

scribed with equal accuracy in either basis.

Another difference between the spherical harmonics and the second moments is that the
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Figure 2.5: Top row: Real spherical harmonic basis functions for ` = 0 and ` = 2. Bottom
row: Second moments of the Cartesian unit vectors in orientation space. The radius of each
glyph indicates the value of the function along that direction. Red surfaces indicate positive
values and blue surfaces indicate negative values. The two sets of basis functions span the
same function space, but only the real spherical harmonics form an orthogonal basis.

spherical harmonics are complex-valued functions while the second moments are real-valued.

Complex-valued spherical harmonics are convenient for mathematical manipulations, but we

can also work with real-valued spherical harmonics for cheaper numerical manipulations or

for improving our intuition. One possible definition of real-valued spherical harmonics is

Y`m(̂so) =



√
2 (−1)m Im

[
Y
|m|
` (̂so)

]
if m < 0,

Y 0
` (̂so) if m = 0,
√

2 (−1)m Re [Ym` (̂so)] if m > 0,

(2.44)

where the pair of lower indices imply that these are real-valued spherical harmonic functions.

In Fig. 2.5 we directly compare the real-valued spherical harmonic functions to the second

moment functions.
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2.5.3 Towards spatio-angular reconstructions

We have focused on modeling the mapping between the object and the data in this chapter,

but ultimately we are interested in reconstructing the object from the data. Considering in-

focus objects and applying the monopole approximation simplifies the reconstruction problem

because both object and data space are L2(R2), so we can directly apply regularized inverse

filters and maximum likelihood methods. The complete three-dimensional dipole model

expands object space to L2(R3×S2), so the inverse problem becomes much more challenging.

In upcoming chapters we will use the singular value decomposition to find inverse filters, and

we will consider using polarizers and multiple views to increase the size of data space.

2.6 Conclusions

Many models of fluorescence microscopes use the monopole and scalar approximations, but

complete models need to consider dipole and vector optics effects. In this chapter we have

introduced several transfer functions that simplify the mapping between the dipole emission

density and the irradiance pattern on the detector. In the upcoming chapters we will calculate

these transfer functions for specific instruments and use the results to simulate and analyze

data collected by these instruments.

2.7 Appendix: Spherical harmonics and the spherical Fourier

transform

The spherical harmonic function of degree ` and order |m| ≤ ` is defined as [133]

Ym` (ϑ, ϕ) =
√

2`+ 1
4π

√√√√(`− |m|)!
(`+ |m|)!P

m
` (cosϑ) exp(imϕ), (2.45)
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where Pm` (cosϑ) are the associated Legendre polynomials with the Condon–Shortley phase

Pm` (x) = (−1)m(1− x2)|m|/2 d
|m|

dx|m|
P`(x), (2.46)

and P`(x) are the Legendre polynomials defined by the recurrence

P0(x) = 1, (2.47)

P1(x) = x, (2.48)

`P`(x) = (2`− 1)xP`−1(x)− (`− 1)P`−2(x). (2.49)

The spherical harmonics are orthonormal, which means that

∫
S2
dŝYm` (̂s)Ym

′∗
`′ (̂s) = δ``′δmm′ , (2.50)

where δ``′ denotes the Kronecker delta. The spherical harmonics form a complete basis for

L2(S2), so an arbitrary square-integrable function on the sphere f (̂s) can be expanded into

a sum of weighted spherical harmonic functions

f (̂s) =
∞∑
`=0

l∑
m=−`

Fm` Y
m
` (̂s). (2.51)

We can find the spherical harmonic coefficients Fm` for a given function using Fourier’s

trick—multiply both sides by Ym∗` (̂s), integrate over the sphere, and exploit orthogonality

to find that

Fm` =
∫
S2
dŝ f (̂s)Ym∗` (̂s). (2.52)

The coefficients Fm` are called the spherical Fourier transform of a spherical function.

We can build an intuition for the spherical harmonics by building several spherical func-
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√

3
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Figure 2.6: Square-integrable functions on the sphere can be written as a weighted sum of
spherical harmonics. The ` = 0, m = 0 spherical harmonic can represent a constant function
(left), m = 0 spherical harmonics can represent rotationally symmetric functions (center),
and m 6= 0 spherical harmonics can represent non-rotationally symmetric functions (right).

tions from their spherical harmonic components—see Fig. 2.6. We can build a constant

function on the sphere with the ` = 0, m = 0 spherical harmonic Y0,0(ϑ, ϕ) =
√

1/4π. The

` = 2, m = 0 spherical harmonic Y2,0(ϑ, ϕ) =
√

5/16π (3 cos2 ϑ − 1) is independent of the

azimuthal angle ϕ, so the function is rotationally symmetric about the ϑ = 0 axis (see the

fourth column of the top row of Fig. 2.5). Y2,0(ϑ, ϕ) is negative for 55◦ < ϑ < 125◦, zero for

ϑ = 55◦, 125◦, and positive otherwise. The weighted sum of these two spherical harmonics

Y0,0(ϑ, ϕ) + 1
8Y2,0(ϑ, ϕ) results in a rotationally symmetric function that is relatively large

near the ϑ = 0 axis (the poles) and relatively small near ϑ = π/2 (the equator). The real-

valued ` = 2, m = 2 spherical harmonic Y2,2(ϑ, ϕ) =
√

15/16π sin2 ϑ cos(2ϕ) (see Eq. (2.44))

depends on both the polar angle ϑ and the azimuthal angle ϕ, so it is not a rotationally

symmetric function (see the sixth column of the top row of Fig. 2.5). The weighted sum

of these three spherical harmonics Y0,0(ϑ, ϕ) + 1
8Y2,0(ϑ, ϕ) + 1

8Y2,2(ϑ, ϕ) results in a non-

rotationally symmetric function that is relatively large near the ϑ = 0 axis (the poles) and

the (ϑ, ϕ) = (π/2, 0) axis, and relatively small near the (ϑ, ϕ) = (π/2, π/2) axis. By adding

spherical harmonics with suitable prefactors, arbitrary square-integrable spherical functions

can be built using the spherical harmonics (see Eq. (2.51)).

2.8 Appendix: Spatio-angular dynamics

In this appendix we will demonstrate the calculation of the dipole emission density from

a simple underlying dynamic model. Our analysis is related to Stallinga’s [78], but here
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we consider an ensemble of dipoles diffusing both spatially and rotationally with homoge-

neous and isotropic diffusion coefficients. We start by considering a sample with all of its

fluorescent molecules in the ground state. At t = 0 an instantaneous pulse excites a spatio-

angular distribution of dipoles so that the initial condition is given by a known function

f (ex)(ro, ŝo, t = 0). As time evolves, we assume the fluorescent molecules decay at a con-

stant rate κ(d), diffuse spatially with a constant coefficient DR, and diffuse angularly with a

constant coefficient DS so that the dynamics are governed by the partial differential equation

∂f (ex)(ro, ŝo, t)
∂t

=
[
−κ(d) +DR∆R3 +DS∆ S2

]
f (ex)(ro, ŝo, t). (2.53)

As written this equation is difficult to solve, but in a basis of complex exponentials and

spherical harmonics this equation reduces to an ordinary differential equation. We start by

expanding f (ex)(ro, ŝo, t) into its frequency components using

f (ex)(ro, ŝo, t) =
∞∑
`=0

∑̀
m=−`

∫
R3
dvF

(ex),m
` (v, t) exp[i2πv · ro]Ym` (̂so). (2.54)

Plugging this expansion into Eq. (2.53) we find that

∞∑
`=0

∑̀
m=−`

∫
R3
dv

∂F
(ex),m
` (v, t)

∂t
exp[i2πv · ro]Ym` (̂so) = (2.55)

[
−κ(d) +DR∆R3 +DS∆ S2

] ∞∑
`=0

∑̀
m=−`

∫
R3
dvF

(ex),m
` (v, t) exp[i2πv · ro]Ym` (̂so).

We can simplify this equation using the eigenvectors and eigenvalues of the spatial and

spherical Laplacian operators

∆R3exp[2πiv · ro] = −(2π|v|)3exp[2πiv · ro], (2.56)

∆S2Ym` (̂so) = −`(`+ 1)Ym` (̂so), (2.57)
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to find that

∞∑
`=0

∑̀
m=−`

∫
R3
dv

∂F
(ex),m
` (v, t)

∂t
exp[i2πv · ro]Ym` (̂so) = (2.58)

∞∑
`=0

∑̀
m=−`

∫
R3
dv

[
−κ(d) −DR(2π|v|)3 −DS`(`+ 1)

]
F

(ex),m
` (v, t) exp[i2πv · ro]Ym` (̂so).

Comparing both sides we find that

∂F
(ex),m
` (v, t)

∂t
=
[
−κ(d) −DR(2π|v|)3 −DS`(`+ 1)

]
F

(ex),m
` (v, t). (2.59)

The solution of this equation is given by

F
(ex),m
` (v, t) = F

(ex),m
` (v, 0) exp[αt], (2.60)

where α = −κ(d) −DR(2π|v|)3 −DS`(`+ 1).

Eq. (2.60) shows that as time evolves the initial spectrum F
(ex),m
` (v, 0) decays to the

ground state while undergoing an effective decay of the high spatial- and angular-frequency

components. In other words, we can interpret diffusion as a filtering operation applied to

the spatio-angular spectrum.

F
(ex),m
` (v, t) is the excited state spectrum, but we can only detect photons emitted as

molecules decay to the ground state during the exposure time te. In other words, we can

only measure the quantity

Fm` (v) =
∫ te

0
dt κ(d)F (ex),m

` (v, t) = F
(ex),m
` (v, 0) κ

(d)

α
{exp[αte]− 1} . (2.61)

The main conclusion of this appendix is that spatial and angular diffusion can be efficiently

described in a basis of complex exponentials and spherical harmonics. Although we have

only considered homogeneous and isotropic diffusion with constant diffusion coefficients,
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the complex exponentials and spherical harmonics can be used to simplify the analysis of

inhomogeneous and anisotropic diffusion as well. Stallinga has used the spherical harmonics

to model angular diffusion in rotationally symmetric potentials [78], and his approach can

be generalized to arbitrary spatial and angular diffusion potentials. We will consider more

general angular diffusion models in chapter 4.
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CHAPTER 3

PARAXIAL 4f IMAGING

I shall speak in round numbers, not absolutely accurate,
yet not so wide from truth as to vary the result materially.

— Thomas Jefferson (1824)

We investigate the properties of a single-view fluorescence microscope in a 4f ge-

ometry when imaging fluorescent dipoles without using the monopole or scalar

approximations. We show that this imaging system has a spatio-angular band limit, and

we exploit the band limit to perform efficient simulations. Notably, we show that informa-

tion about the out-of-plane orientation of ensembles of in-focus fluorophores is recorded by

paraxial fluorescence microscopes. Additionally, we show that the monopole approximation

may cause biased estimates of fluorophore concentrations, but these biases are small when

the sample contains either many randomly oriented fluorophores in each resolvable volume

or unconstrained rotating fluorophores.

3.1 Introduction

In the previous chapter we developed a new set of transfer functions that can be used to

analyze spatio-angular fluorescence microscopes. In this chapter we will demonstrate these

transfer functions by analyzing a single-view fluorescence microscope in a 4f geometry.

The central goal of this chapter is to understand how much angular information an

unmodified 4f microscope transmits to the detector. Fluorescence microscopists know that

without structured illumination or single molecule techniques they can only hope to recover

spatial frequencies up to the spatial band limit of the optical system 2NA/λ. In this chapter

we will find a similar limit for angular frequencies and understand what design factors affect

this limit.
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A secondary goal of this chapter is to examine the validity of the monopole approximation

in fluorescence microscopy. Although many works implicitly apply the monopole approxima-

tion, we have encountered two explicit justifications: (1) the sample contains many randomly

oriented fluorophores within a resolvable volume or (2) the sample contains unconstrained

rotating fluorophores. While both of these situations yield monopole-like emitters, neither

yields emitters that are perfectly described by the monopole model. We investigate the

dipole model of fluorophores in detail and find the conditions under which the monopole

approximation is justified.

We begin in section 3.2 by specifying the imaging geometry and defining pupil functions

for imaging systems with and without the monopole approximation. We explicitly relate the

pupil functions to the coherent transfer functions to establish a connection between physical

calculations and the transfer functions. Next, in section 3.3 we calculate the monopole and

dipole transfer functions in closed form, and we use these transfer functions to perform

efficient simulations with four numerical phantoms. Finally, in section 3.4 we discuss the

results and expand on how the pupil functions can be used to develop improved models for

spatio-angular microscopes.

3.2 Theory

During our initial modeling we considered an aplanatic optical system imaging a sample

of fluorescent emissions—either a monopole emission density, f(ro), or a dipole emission

density, f(ro, ŝo)—by recording the scaled irradiance on a two-dimensional detector, g(rd).

A central result was that we could express the relationship between the object (the emission

densities) and the data (the irradiance) as a linear Hilbert-space operator, and we showed

that these operators took the form of an integral transform in a delta function basis. In this

chapter we will restrict our attention to in-focus objects, so we will split ro into r⊥o and ro

53



Quantity Symbol Relationships

Monopole emission density f(r⊥o ) —
Monopole spectrum F (ν) = FR2

{
f(r⊥o )

}
Monopole coherent spread function c(rd − r⊥o ) —
Monopole coherent transfer function C(τ ) = FR2

{
c(rd − r⊥o )

}
Monopole point spread function h(rd − r⊥o ) = |c(rd − r⊥o )|2
Monopole transfer function H(ν) = FR2

{
h(rd − r⊥o )

}
=
∫
R2 dτ C(τ )C∗(τ − ν)

Scaled irradiance g(rd) =
∫
R2 dr⊥o h(rd − r⊥o )f(r⊥o )

Scaled irradiance spectrum G(ν) = FR2 {g(rd)} = H(ν)F (ν)

Table 3.1: Summary of relevant quantities for in-focus fluorescence microscopy under the
monopole approximation—see chapter 2 for derivations. FR2 denotes a two-dimensional
Fourier transform.

and set ro = 0. For in-focus monopole emissions the integral transform takes the form

g(rd) =
∫
R2
dr⊥o h(rd − r⊥o )f(r⊥o ), (3.1)

where h(rd − r⊥o ) is the monopole point spread function. For dipole emissions the integral

transform takes the form

g(rd) =
∫
S2
dŝo

∫
R2
dr⊥o h(rd − r⊥o , ŝo)f(r⊥o , ŝo), (3.2)

where h(rd−r⊥o , ŝo) is the dipole point spread function. Note that we have written Eqs. (3.1)

and (3.2) in their demagnified forms. We will use primes to denote the unscaled detector

coordinate, r′d, and unscaled point spread functions, h′.

After expressing the operators in a delta function basis we explored the form of the

operators with several other choices of basis functions. Tables 3.1 and 3.2 summarize our

results.

Our task is to calculate the form of the monopole and dipole transfer functions for a
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Quantity Symbol Relationships

Dipole emission density f(r⊥o , ŝo) —
Dipole spatial spectrum F (ν, ŝo) = FR2

{
f(r⊥o , ŝo)

}
Dipole angular spectrum Fm` (r⊥o ) = FS2

{
f(r⊥o , ŝo)

}
Dipole spatio-angular spectrum Fm` (ν) = FR2

{
Fm` (r⊥o )

}
= FS2 {F (ν, ŝo)}

Dipole coherent spread function c(rd − r⊥o , ŝo) —
Dipole coherent transfer function C(τ , ŝo) = FR2

{
c(rd − r⊥o , ŝo)

}
Dipole point spread function h(rd − r⊥o , ŝo) = |c(rd − r⊥o , ŝo)|2
Dipole spatial transfer function H(ν, ŝo) = FR2

{
h(rd − r⊥o , ŝo)

}
=
∫
R2 dτ C(τ , ŝo)C†(τ − ν, ŝo)

Dipole angular transfer function Hm
` (rd − r⊥o ) = FS2

{
h(rd − r⊥o , ŝo)

}
Dipole spatio-angular tran. func. Hm` (ν) = FR2

{
Hm
` (rd − r⊥o )

}
=FS2{H(ν, ŝo)}

Scaled irradiance g(rd) =
∫
S2dŝo

∫
R2dr⊥o h(rd − r⊥o , ŝo)f(r⊥o , ŝo)

= ∑
`m
∫
R2 dr⊥o Hm

` (rd − r⊥o )Fm` (r⊥o )
Scaled irradiance spectrum G(ν) = FR2 {g(rd)}

=
∫
S2 dŝoH(ν, ŝo)F (ν, ŝo)

= ∑
`m Hm` (ν)Fm` (ν)

Table 3.2: Summary of relevant quantities for in-focus spatio-angular dipole imaging—see
chapter 2 for derivations. FR2 denotes a two-dimensional Fourier transform, and FS2 denotes
a spherical Fourier transform.

specific imaging geometry. In this chapter we will consider an aplanatic optical system in a

4f configuration with an arbitrary first lens (the objective lens) and a paraxial second lens

(the tube lens) as shown in Fig. 3.1. A lens can be considered paraxial if the angle α between

the optical axis of the lens and the marginal ray is small enough that sinα ≈ α. As a rule of

thumb, non-paraxial effects only become significant when the numerical aperture of a lens

exceeds 0.7 [126, ch. 6], but this is only a rough guideline. Commercial microscopes with

infinity-corrected objectives can almost always can be modeled by considering the tube lens

as paraxial.
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Figure 3.1: Schematic of an aplanatic imaging system in a 4f geometry with a paraxial tube
lens. We are considering an aplanatic optical system, so we only need to consider the image
created by on-axis objects. The fluorescent object consists of ensembles of monopoles or
dipoles embedded in a medium with index of refraction n0. An objective with focal length
f0 and numerical aperture NA = no sinα is trained on the object. A paraxial tube lens
with focal length f1 and a detector complete the 4f geometry, and all components except
the object are embedded in a medium with index of refraction n1. The object, pupil, and
detector planes are parameterized by vectors r⊥o , rp, and rd with polar coordinates (ro, φo),
(rp, φp), and (rd, φd), respectively. At each position r⊥o in the object there is a sphere
parameterized by a unit vector ŝo with spherical coordinates (ϑ, ϕ).

3.2.1 Monopole pupil functions

We define the monopole pupil function p(rp) of the imaging system as the field immediately

following the pupil plane created by an on-axis monopole, where rp is an unscaled two-

dimensional coordinate in the pupil plane. In this section we will relate the monopole

pupil function to the monopole transfer functions by adapting the treatment in Barrett and

Myers [1, ch. 9.7].

Since monopoles emit scalar fields, the monopole pupil function is a scalar-valued func-

tion. The optical system is aplanatic, so we can write the field, Up(rp, r⊥o ), created at a point
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in the pupil plane rp by a monopole at position r⊥o as

Up(rp, r⊥o ) ∝ p(rp) exp
[
−2πi n0

λf0
rp · r⊥o

]
, (3.3)

where λ is the emission wavelength, and f0 is the focal length of the objective. Equation (3.3)

is a restatement of the aplanatic condition for a 4f optical system—the fields in the pupil

plane can be written as the pupil function multiplied by a linear phase factor that encodes

the position of the object.

Since the second lens is paraxial, we can model the relationship between the field in the

pupil plane and the field on the detector with a scaled Fourier transform [80, 134, 135]:

Ud(r′d, r
⊥
o ) ∝

∫
R2
drp p(rp) exp

[
−2πi n0

λf0
rp · r⊥o

]
exp

[
−2πi n1

λf1
rp · r′d

]
, (3.4)

where r′d is an unscaled detector coordinate, and f1 is the focal length of the tube lens.

If we define P (τ ) as the two-dimensional Fourier transform of the pupil function then we

can rewrite Eq. (3.4) as

Ud(r′d, r
⊥
o ) ∝ P

(
n0
λf0

r⊥o + n1
λf1

r′d

)
, (3.5)

which we can simplify further by writing in terms of the magnification m = −f1n0
f0n1

:

Ud(r′d −mr⊥o ) ∝ P

(
n1
λf1

[r′d −mr⊥o ]
)
. (3.6)

The irradiance on the detector is the absolute square of the field so

h′(r′d −mr⊥o ) ∝
∣∣∣∣∣P
(
n1
λf1

[r′d −mr⊥o ]
)∣∣∣∣∣

2
. (3.7)

If we demagnify the coordinates with rd = r′d/m and demagnify the irradiance with
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h(rd − r⊥o ) ∝ h′(m[rd − r⊥o ]), we find that the monopole point spread function is related to

the Fourier transform of the monopole pupil function by

h(rd − r⊥o ) ∝
∣∣∣∣∣P
(
− no
λfo

[rd − r⊥o ]
)∣∣∣∣∣

2
. (3.8)

The monopole point spread function is the absolute square of the monopole coherent spread

function so

c(rd − r⊥o ) ∝ P

(
− no
λfo

[rd − r⊥o ]
)
. (3.9)

Finally, the monopole coherent transfer function is the Fourier transform of the monopole

coherent spread function so

C(τ ) ∝ p

(
λfo
no
τ

)
. (3.10)

Equation (3.10) is the key result of this section—the monopole coherent transfer function is

a scaled monopole pupil function.

3.2.2 Dipole pupil function

We define the dipole pupil function p(rp, ŝo) of the imaging system as the electric field

immediately following the pupil plane created by an on-axis dipole oriented along ŝo. Since

dipoles emit vector-valued electric fields, the dipole pupil function is a vector-valued function.

Almost all of the arguments in the previous section carry over to the dipole case. Briefly,

we can write the electric field created at a point in the pupil rp by a dipole at r⊥o oriented

along ŝo as

Ep(rp, r⊥o , ŝo) ∝ p(rp, ŝo) exp
[
−2πi n0

λf0
rp · r⊥o

]
. (3.11)
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The second lens is paraxial, so we can find the field on the detector with a Fourier transform

Ed(r′d, r
⊥
o , ŝo) ∝

∫
R2
drp p(rp, ŝo) exp

[
−2πi n0

λf0
rp · r⊥o

]
exp

[
−2πi n1

λf1
rp · r′d

]
. (3.12)

Note that the Fourier transform of a vector field is the Fourier transform of its scalar-valued

orthogonal components, so Eq. (3.12) specifies three two-dimensional Fourier transforms.

We follow the same manipulations as the previous section and find that the dipole coherent

transfer function is a scaled dipole pupil function

C(τ , ŝo) ∝ p
(
λfo
no
τ , ŝo

)
. (3.13)

We have restricted our analysis to paraxial tube lenses, but non-paraxial tube lenses (or a

non-infinity-corrected objective) can be modeled with vector-valued three-dimensional pupil

functions [126, 136–138].

3.2.3 Special functions

We adopt and generalize Bracewell’s notation [139] for several special functions which will

simplify our calculations. First, we define a rectangle function as

Π(x) =


1 if |x| < 1

2 ,

0 else.
(3.14)

We also define the nth-order jinc function as

jincn(r) = Jn+1(πr)
2r , (3.15)

where Jn+1(r) is the (n+ 1)th-order Bessel function of the first kind.
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Although the rectangle and jinc functions are defined in one dimension, we will usually

apply them in two dimensions. In Appendix 3.6 we derive the following two-dimensional

Fourier transform relationships between the jinc functions and the weighted rectangle func-

tions

in
{exp(inφr)

cos(nφr)
sin(nφr)

}
jincn(r)

FR2−→ (2ν)n
{exp(inφν)

cos(nφν)
sin(nφν)

}
Π(ν), (3.16)

where the entries inside the curly braces are to be taken one at a time and {r, φr}/{ν, φν}

are conjugate sets of polar coordinates.

Finally, we define the nth-order chat function as the two-dimensional Fourier transform

of the squared nth-order jinc function

jinc2
n(r)

FR2−→ chatn(ν). (3.17)

In Appendix 3.6 we show that the zeroth- and first-order chat functions can be written

in closed form as

chat0(x) = 1
2

[
cos−1 |x| − |x|

√
1− x2

]
Π
(
x

2

)
, (3.18)

chat1(x) = 1
2

[
cos−1 |x| − |x|(3− 2x2)

√
1− x2

]
Π
(
x

2

)
. (3.19)

3.3 Results

3.3.1 Monopole transfer functions

Our first step towards the monopole transfer functions is to calculate the monopole pupil

function and coherent transfer function. Several works [140, 141] have modeled an aplanatic
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fluorescence microscope imaging monopole emitters with the scalar pupil function

p(rp) ∝ C̃

(
rp
fo

)
Π
(

rp
2fo sinα

)
, (3.20)

where

C̃(x) = (1− x2)−1/4 = 1 + x2

4 + 5x4

32 + · · · . (3.21)

The C̃(x) function models the radial dependence of the field and ensures that power is

conserved on either side of an aplanatic objective, and the rectangle function models the

aperture stop of the objective. Applying Eq. (3.10) and collecting constants we find that the

coherent monopole transfer function is

C(τ ) ∝ C̃

(
2NA
no

τ

νc

)
Π
(
τ

νc

)
, (3.22)

where NA = no sinα and νc = 2NA/λ. This coherent transfer function models objectives

with an arbitrary numerical aperture, but for our initial analysis we restrict ourselves to the

paraxial regime. We drop second- and higher-order radial terms to find that

C(τ )
(p)
∝ Π

(
τ

νc

)
, (3.23)

where (p) indicates that we have used the paraxial approximation for the objective lens.

We can find the monopole coherent spread function by taking the inverse Fourier trans-

form of the monopole coherent transfer function

c(r)
(p)
∝ jinc0(νcr). (3.24)

The monopole point spread function is the (normalized) absolute square of the monopole
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coherent spread function so

h(r) (p)= 4
π
jinc2

0(νcr), (3.25)

which is the well-known Airy disk.

Finally, we can calculate the monopole transfer function as the two-dimensional Fourier

transform of the monopole point spread function (or the autocorrelation of the coherent

transfer function) and find that

H(ν) (p)= 4
π
chat0

(
ν

νc

)
. (3.26)

3.3.2 Dipole transfer functions

To calculate the dipole transfer function we proceed similarly to the monopole case—we find

the pupil function, scale to find the coherent dipole transfer function, then calculate the

remaining transfer functions.

Several works [71, 72, 80] have calculated the dipole pupil function for a high-NA objec-

tive. Using Backer and Moerner’s notation we find that the dipole pupil function is given

by

p(rp, ŝo)∝


C̃0
(rp
fo

)
+C̃2

(rp
fo

)
c(2φp) C̃2

(rp
fo

)
s(2φp) C̃1

( rp
f0

)
c(φp)

C̃2
(rp
fo

)
s(2φp) C̃0

(rp
fo

)
−C̃2

(rp
fo

)
c(2φp) C̃1

( rp
f0

)
s(φp)

0 0 0




sx

sy

sz

Π
(

rp
2fos(α)

)
,

(3.27)

where c(x) and s(x) are shorthand for cos(x) and sin(x), {sx, sy, sz} are the Cartesian

62



components of ŝo when ẑ is aligned with the optical axis, and

C̃0(x) = 1
2

(√
1− x2 + 1

)
(1− x2)−1/4 = 1 + x4

32 + x6

32 + · · · , (3.28)

C̃1(x) = x(1− x2)−1/4 = x+ x3

4 + 5x5

32 + · · · , (3.29)

C̃2(x) = 1
2

(√
1− x2 − 1

)
(1− x2)−1/4 = −x

2

4 −
x4

8 −
11x6

128 − · · · . (3.30)

Similar to the monopole case, the dipole pupil function conserves power and has a cutoff at

the objective aperture, but the dipole pupil function is vector-valued to model the complete

electric field in the pupil plane.

Scaling the dipole pupil function using Eq. (3.13) yields the dipole coherent transfer

function

C(τ , ŝo)∝


C̃0
(
λrpτ
n0

)
+C̃2

(
λrpτ
n0

)
c(2φτ ) C̃2

(
λrpτ
n0

)
s(2φτ ) C̃1

(
λrpτ
n0

)
c(φτ )

C̃2
(
λrpτ
n0

)
s(2φτ ) C̃0

(
λrpτ
n0

)
−C̃2

(
λrpτ
n0

)
c(2φτ ) C̃1

(
λrpτ
n0

)
s(φτ )

0 0 0




sx

sy

sz

Π
(
τ

νc

)
.

(3.31)

We restrict our analysis to the paraxial regime of the objective lens by dropping second- and

higher-order radial terms to find that

C(τ , ŝo)
(p)
∝


1 0 2NA

no
τ
νc

cosφτ

0 1 2NA
no

τ
νc

sinφτ

0 0 0




sx

sy

sz

Π
(
τ

νc

)
. (3.32)

Under the paraxial approximation applied to the objective lens the transverse components

of the dipole {sx, sy} create purely parallel fields in the pupil plane and the axial component

of the dipole {sz} creates purely radial fields in the pupil plane. Applying the paraxial

approximation to the objective lens may seem crude compared to Backer and Moerner’s
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numerical results, but the approximation will allow us to calculate the transfer functions

in closed form so that we can build an intuition for the limits of the microscope. We also

note that many existing works in ensemble polarized fluorescence microscopy make stronger

approximations than ours. For example, Fourkas only considers the total irradiance in the

pupil plane while ignoring the propagation of fields to the detector [63].

The dipole coherent spread function is the inverse Fourier transform of the dipole coherent

transfer function. Applying Eq. (3.16) in reverse yields

c(r, ŝo)
(p)
∝


jinc0(νcr) 0 NA

no
i cosφ jinc1(νcr)

0 jinc0(νcr) NA
no
i sinφ jinc1(νcr)

0 0 0




sx

sy

sz

 . (3.33)

Notice that the radial component of the dipole coherent spread function has a π/2 phase shift

relative to the parallel component. This phase factor arises because the Fourier transform

of a real and odd function is purely imaginary.

Paraxial dipole point spread function

The dipole point spread function is the (normalized) absolute square of the coherent dipole

spread function

h(r, ŝo) ∝ c(r, ŝo)c†(r, ŝo). (3.34)

Plugging in the paraxial dipole coherent spread function and normalizing yields

h(r, ŝo)
(p)= N

jinc2
0(νcr) sin2 ϑ+

(
NA
no

)2
jinc2

1(νcr) cos2 ϑ

 , (3.35)
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where sin2 ϑ = s2
x + s2

y, cos2 ϑ = s2
z, and the normalization factor is

N = 6ν2
cπ
−3/2

2 +
(
NA
no

)2−1
. (3.36)

As discussed above, the parallel and radial fields are out of phase on the detector, so the

total irradiance is the sum of the contributions from the parallel and radial components. In

Fig. 3.2 we plot the dipole point spread function for several dipole orientations and numerical

apertures, and in Fig. 3.3 we compare the monopole point spread function to the dipole point

spread function. The paraxial monopole and dipole models are only equivalent when the

sample consists of transverse dipoles, which is clear if we notice that Eq. (3.35) reduces to

an Airy disk when ϑ = π/2—see Novotny and Hecht for a similar observation [73, ch. 4].
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Figure 3.2: Renormalized paraxial dipole point spread function as a function of the scaled
radial coordinate νcr, the dipole inclination angle ϑ, and NA/no. For small numerical
apertures (left) the irradiance pattern created by axial dipoles (red) is small compared to
transverse dipoles (black), but the relative contribution of axial dipoles increases with the
numerical aperture (see red lines from left to right). Additionally, we plot the monopole
point spread function (green) and observe that the paraxial monopole and dipole models
are identical for transverse dipoles (the green and black lines are coincident).

All of the figures in this chapter use the paraxial approximation applied to the objec-

tive lens. We estimated the error introduced by this approximation by numerically calcu-

lating the dipole point spread function using the exact pupil function in Eq. (3.27) and
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Figure 3.3: Comparison of paraxial models for monopole radiators a) and dipole radiators
b)–d). a) Monopole radiators fill the pupil plane with a uniform scalar field which gives
rise to an Airy disk on the detector. b) A transverse dipole radiator also creates an Airy
disk, but the pupil plane is filled with a uniform vector field. c) An axial dipole radiator
creates a radial electric field pattern in the back focal plane that creates a jinc2

1(r) pattern
on the detector. d) Dipoles that are not transverse or axial still create radially symmetric
irradiance patterns under the paraxial approximation. Fields from transverse dipoles are real
and even while fields from axial dipoles are real and odd, which causes a relative π/2 phase
shift for the fields on the detector. This phase shift means that the fields from transverse and
axial components of the dipole do not interfere, which causes radially symmetric irradiance
patterns.

comparing the result to the analytic dipole point spread function in Eq. (3.35). We found

that the maximum irradiance error (root mean square irradiance error) in the image plane

for NA/no = 0.25, 0.5 and 0.75 was 1%(0.02%), 5%(0.05%), and 12%(0.12%), respectively.

Although the paraxial approximation introduces relatively large errors in the fields near the

edge of the pupil function, the irradiance errors are modest for NA/no < 0.75 because the

paraxial pupil function is accurate near the optical axis, every point in the pupil contributes
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to the irradiance, and the irradiance is the absolute square of fields. However, note that the

paraxial approximation introduces increasingly large errors as NA/no approaches 1. Addi-

tionally, the paraxial approximation on the objective imposes radial symmetry on the dipole

point spread function. This radial symmetry is approximate, and the symmetry disappears

for high-NA objectives.

To demonstrate the paraxial dipole point spread function we simulate a set of equally

spaced dipoles with varying orientation:

f(ph1)(rx, ry, ϑ, ϕ) =
3∑
j=0

3∑
k=0

δ (rx − j) δ
(
ry − k

)
δ
(
cosϑ− cosϑj

)
δ (ϕ− ϕk) , (3.37)

where ϑj = j π6 , ϕk = kπ4 , the subscript (ph1) indicates that this is the first phantom, and

the spatial coordinates are expressed in µm. To find the irradiance pattern created by the

phantom we plug Eq. (3.37) into Eq. (3.2) and use the sifting property to find that

g(ph1)(rx, ry) =
3∑
j=0

3∑
k=0

h

(√
(rx − j)2 +

(
ry − k

)2
, ϑj

)
. (3.38)

In Fig. 3.4 we plot the phantom and scaled irradiance for an imaging system with NA = 0.75,

λ = 500 nm, and no = 1.33. For these parameters the maximum irradiance error introduced

by the paraxial approximation is 6%. We sample and plot the scaled irradiance at 20×

the Nyquist rate, ∆x = 1/[20(2νc)], so the irradiance patterns are free of aliasing. The

output demonstrates that the irradiance pattern depends on the dipole inclination, but not

its azimuth.

Paraxial dipole spatial transfer function

The dipole spatial transfer function is the spatial Fourier transform of the dipole point spread

function (or the complex autocorrelation of the dipole coherent transfer function). Applying
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Figure 3.4: Left: A spatially and angularly sparse phantom—uniformly spaced single dipoles
with varying orientations (increasing ϑ from left to right and increasing ϕ from bottom to
top). White crosses mark the positions of the dipoles. Center: Scaled irradiance for an
imaging system with NA = 0.75, λ = 500 nm, and no = 1.33 sampled at 20× the Nyquist
rate. Right: x profiles through the scaled irradiance. The response is independent of the
azimuth angle and strongly dependent on the inclination angle.

the Fourier transform to Eq. (3.35) we find that

H(ν, ϑ) (p)= N

ν2
c

chat0 ( ν
νc

)
sin2 ϑ+

(
NA
no

)2
chat1

(
ν

νc

)
cos2 ϑ

 . (3.39)

In Fig. 3.5 we plot the dipole spatial transfer function for several dipole orientations and

numerical apertures. We find that the dipole spatial transfer function is negative for axial

dipoles at high spatial frequencies, especially for larger numerical apertures. The negative

dipole spatial transfer function corresponds to a contrast inversion for high-frequency pat-

terns of axial dipoles because the irradiance minimum corresponds to the position of the

dipole.

To demonstrate the dipole spatial transfer function we simulate a set of equally spaced

disks with varying diameter containing fluorophores with varying orientation

f(ph2)(rx, ry, ϑ) =
3∑
j=0

3∑
k=0

1
D2
k

Π
(

1
Dk

√
(rx − j)2 +

(
ry − k

)2
)
δ
(
cosϑ− cosϑj

)
(3.40)
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Figure 3.5: Dipole spatial transfer function as a function of the scaled spatial frequency
ν/νc, the dipole inclination angle ϑ, and NA/no. For small numerical apertures (left) the
dipole spatial transfer function for axial dipoles (red) is small compared to transverse dipoles
(black), but the relative contribution of axial dipoles increases with the numerical aperture
(see red lines from left to right). The spatial dipole transfer function of axial dipoles is
negative at high spatial frequencies because the central minimum of the axial dipole point
spread function corresponds to the position of the dipole. Equivalently, a high-spatial-
frequency pattern of axial dipoles will generate an irradiance pattern where the minimum
irradiance corresponds to the peak of the axial dipole emission density. Additionally, we plot
the monopole transfer function (green) and observe that the paraxial monopole and dipole
models are identical for transverse dipoles (the green and black lines are coincident).

where Dk = 0.15(1 + k)µm and ϑj = j π6 . Notice that we have scaled the disks so that the

total number of fluorophores in each disk is constant. Also notice that the disk can model

a spatial distribution of many fluorophores or a single molecule undergoing spatial diffusion

within a well.

We can calculate the scaled irradiance by taking the spatial Fourier transform of each

orientation in the phantom, multiplying the result with the dipole spatial transfer function,

summing over the orientations, then taking the inverse spatial Fourier transform

g(ph2)(rx, ry) = F−1
R2

∑
j

H(ν, ϑj)FR2
{
f(ph2)(rx, ry, ϑj)

} . (3.41)

In Fig. 3.6 we plot the phantom and scaled irradiance with the same imaging parameters

as the previous section. The small disks create irradiance patterns that are similar to the
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point sources in the previous section, while larger disks create increasingly uniform irradiance

patterns that hide the orientation of the fluorophores.
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Figure 3.6: Left: A spatially dense and angularly sparse phantom—uniformly spaced disks
with varying size (increasingD from bottom to top) and dipole orientation (increasing ϑ from
left to right) Center: Scaled irradiance for an imaging system with NA = 0.75, λ = 500 nm,
and no = 1.33 sampled at 20× the Nyquist rate. Right: x profiles through the scaled
irradiance. Larger disks generate increasingly uniform irradiance patterns with fewer details
that may indicate the orientation of fluorophores.

Paraxial dipole angular transfer function

To calculate the angular dipole transfer function we take the spherical Fourier transform of

the dipole point spread function

Hm
l (r) =

∫
S2
dŝo h(r, ŝo)Ym∗l (̂so). (3.42)

After evaluating the integrals and normalizing, the angular dipole transfer function is

Hm
l (r) (p)= N

3

2jinc2
0(νcr) +

(
NA
no

)2
jinc2

1(νcr)
Λ0δ`0δm0 +

N

3

−2jinc2
0(νcr) + 2

(
NA
no

)2
jinc2

1(νcr)
Λ2δ`2δm0, (3.43)
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where Λ` =
√

4π/(2`+ 1). Notice that the dipole angular transfer function only has two

non-zero terms that correspond to m = 0 spherical harmonics. These spherical harmonics

are rotationally symmetric about the optical axis, and this symmetry is imposed by the

paraxial approximation. When the paraxial approximation is not applied to low-NA imaging

systems, the higher-orderm terms will be very small. As the NA increases, the relative size of

the higher-order m terms increases. The root mean square error introduced by the paraxial

approximation is conserved under a change of basis, so the paraxial approximation introduces

a 0.02%, 0.05%, 0.12% RMS error for NA/no = 0.25, 0.5 and 0.75, respectively.

In Fig. 3.7 we plot the dipole angular transfer function for both spherical harmonic terms

and several numerical apertures. Note that the dipole angular transfer function can be neg-

ative because the spherical harmonics can take negative values. The ` = 0 term shows that

angularly uniform distributions of dipoles create spatial irradiance patterns that are similar

but not identical to the Airy disk, while the ` = 2 term shows a negative pattern because of

the large contribution of the transverse negative values in the Y 0
2 spherical harmonic.

To demonstrate the dipole angular transfer function we simulate a set of equally spaced

fluorophore distributions with varying orientation and angular distributions

f(ph3)(rx, ry, ϑ) =
3∑
j=0

3∑
k=0

δ (rx − j) δ
(
ry − k

)
f(cone)

(
ϑ, ϕ;ϑj , 0,∆k

)
, (3.44)

where

f(cone)(̂so; ŝ′o,∆) = f(cone)(ϑ, ϕ;ϑ′, ϕ′,∆) = 1
4π(1− cos ∆)Π

(
ŝ · ŝ′

2 cos ∆

)
(3.45)

is an angular double cone distribution with central direction ŝ′ and cone half-angle ∆; ϑj =

j π6 ; and ∆k = kπ6 . Notice that when ∆ = 0 the angular double cone reduces to a single

direction, and when ∆ = π/2 the angular double cone reduces to an angularly uniform

distribution. Also notice that the double cone can model angular diffusion or the angular
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Figure 3.7: Paraxial dipole angular transfer function in terms of a scaled radial detection co-
ordinate νcr, the spherical harmonic degree `, and NA/no. Angularly uniform distributions
of dipoles ` = 0 generate a spatial pattern that is similar but not identical to the Airy disk
created by a monopole (green), and this discrepancy increases with the numerical aperture.
` = 2 distributions have a negative response because Y 0

2 (̂s) is negative for transverse direc-
tions. As the numerical aperture increases, the relative contribution of positive axial dipoles
in the ` = 2 distribution increases.

distribution of many fluorophores within a resolvable volume.

Our first step towards the irradiance pattern is to calculate the dipole angular spectrum

of the phantom. In Appendix 3.7 we calculate the spherical Fourier transform of the double

cone distribution Fm`,(cone)(ϑ
′, ϕ′; ∆) which we can use to express the dipole angular spectrum

as

Fm`,(ph3)(rx, ry, ϑ) =
3∑
j=0

3∑
k=0

δ (rx − j) δ
(
ry − k

)
Fm`,(cone)

(
ϑj , 0,∆k

)
. (3.46)

To calculate the scaled irradiance we multiply the dipole angular spectrum by the dipole

angular transfer function and sum over the dipoles and spherical harmonics

g(ph3)(rx, ry) =
∑
`m

3∑
j=0

3∑
k=0

Hm
`

(√
(rx − j)2 +

(
ry − k

)2
)
Fm`,(cone)

(
ϑj , 0,∆k

)
. (3.47)

In Fig. 3.8 we plot the phantom and scaled irradiance with the same imaging parameters
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as the previous sections. For small cone angles the irradiance patterns are similar to the

point sources in the previous sections, while larger cone angles create increasingly uniform

irradiance patterns that hide the angular information about the distributions.
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Figure 3.8: Left: A spatially sparse and angularly dense phantom—uniformly spaced double
cone distributions of fluorophores with varying central direction (increasing ϑ′ from left to
right) and varying cone half-angle (increasing ∆ from bottom to top). Center: Scaled
irradiance for an imaging system with NA = 0.75, λ = 500 nm, and no = 1.33 sampled at
20× the Nyquist rate. Right: x profiles through the scaled irradiance. Small cone angles
have irradiance patterns that vary with the central direction, while larger cones angles have
increasingly uniform irradiance patterns that hide angular information.

Paraxial dipole spatio-angular transfer function

We can calculate the dipole spatio-angular transfer function by taking the spatial Fourier

transform of the dipole angular transfer function (or the spherical Fourier transform of the

dipole spatial transfer function) to find that

Hm` (ν) (p)= N

3ν2
c

2chat0
(
ν

νc

)
+
(
NA
no

)2
chat1

(
ν

νc

)Λ0δ`0δm0+

N

3ν2
c

−2chat0
(
ν

νc

)
+ 2

(
NA
no

)2
chat1

(
ν

νc

)Λ2δ`2δm0. (3.48)
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In Fig. 3.9 we plot the dipole spatio-angular transfer function for both spherical harmonic

terms and several numerical apertures. The ` = 0 term shows that an angularly uniform

distribution of dipoles has a transfer function that is similar but not identical to the monopole

transfer function with high frequencies increasingly suppressed as the numerical aperture

increases. The ` = 2 term shows a negative pattern because of the large contribution of the

transverse negative values in the Y 0
2 spherical harmonic. As the numerical aperture increases

the relative contribution of the positive axial values increases and the ` = 2 term becomes

less negative.
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Figure 3.9: Spatio-angular dipole transfer function as a function of the scaled spatial fre-
quency ν/νc, the spherical harmonic degree `, and NA/no. When the numerical aperture is
small the transverse dipoles contribute the most to the signal which gives rise to a positive
` = 0 component and a negative ` = 2 component. As the numerical aperture increases, the
relative contribution of axial dipoles increases and the ` = 2 component becomes less neg-
ative. Additionally, we plot the monopole transfer function (green) and observe that the
` = 0 term is similar but not identical to the monopole transfer function, and this discrepancy
increases with the numerical aperture.

To demonstrate the spatio-angular transfer function, we simulate a set of equally spaced

disks of fluorophores with varying radius and angular distributions

f(ph4)(rx, ry, ϑ, ϕ) =
3∑
j=0

3∑
k=0

1
D2
k

Π
(

1
Dk

√
(rx − j)2 +

(
ry − k

)2
)
f(cone)

(
ϑ, ϕ; π2 , 0,∆j

)
,

(3.49)
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where Dk = 0.15(1 + k)µm, and ∆j = j π6 .

Our first step towards calculating the irradiance pattern is to calculate the dipole spatio-

angular spectrum given by the spatial Fourier transform of the dipole angular spectrum

Fm`,(ph4)(νx, νy) = FR2


3∑
j=0

3∑
k=0

1
D2
k

Π
(

1
Dk

√
(rx − j)2 +

(
ry − k

)2
)
Fm`,cone

(
π

2 , 0,∆j

) .
(3.50)

To calculate the scaled irradiance we multiply the dipole spatio-angular spectrum by the

dipole spatio-angular transfer function, sum over the spherical harmonics, then take an

inverse Fourier transform

g(ph4)(rx, ry) = F−1
R2

∑
`m

Hm` (νx, νy)Fm`,(ph4)(νx, νy)

 . (3.51)

In Fig. 3.10 we plot the phantom and scaled irradiance with the same imaging parameters

as the previous sections. Small cone angles and small disks create relatively unique irradiance

patterns, while increasing the cone angle or disk size creates increasingly similar irradiance

patterns.

3.4 Discussion

3.4.1 Interpreting the spherical harmonics

Before we interpret the spherical harmonics it is worthwhile to review the interpretation of

complex exponentials in monopole fluorescence imaging. We can think of complex exponen-

tial functions exp[i2πr⊥o ·ν] as functions on the plane with coordinates r⊥o indexed by spatial

frequencies ν. Complex exponentials with small spatial frequencies |ν| can be used to build

smooth functions, and complex exponentials with higher spatial frequencies can be added to

build sharp edge-like functions. Note that the complex exponentials themselves do not have
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Figure 3.10: Left: A spatially and angularly dense phantom—uniformly spaced disks with
varying size (increasingD from bottom to top) and double cone half angle (increasing ∆ from
left to right) Center: Scaled irradiance for an imaging system with NA = 0.75, λ = 500 nm,
and no = 1.33 sampled at 20× the Nyquist rate. Right: x profiles through the scaled
irradiance.

a direct physical interpretation—they are purely a mathematical convenience for efficiently

describing and interpreting imaging systems. A direct physical interpretation would require

us to interpret negative- and complex-valued “densities”. However, each complex exponen-

tial component of the emission density creates a single physically interpretable plane wave

that propagates through the imaging system. This indirect physical interpretation of the

complex exponentials is valuable for building an intuition for the effects of pupil apertures

and phase masks.

Similarly, the spherical harmonics Ym` (̂so) are functions on the sphere with coordinates

ŝo indexed by angular frequencies ` and m. Spherical harmonics with small ` can be used

to build smooth spherical functions (for example the ` = 0 spherical harmonic is a constant

function), and spherical harmonics with higher ` can be added to build sharp edge-like

spherical functions. Spherical harmonics with m = 0 (the zonal harmonics) can be used to

build spherical functions that are rotationally symmetric about the optical axis, and spherical

harmonics with non-zero m can be used to build non-rotationally symmetric functions. Once
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again, the spherical harmonics do not have a direct physical interpretation, but they are

useful for efficiently describing and interpreting angular imaging systems.

A single spatio-angular component of the dipole emission density (parameterized by a

spatial frequency ν and angular frequency ` and m) creates a single plane wave that prop-

agates through the imaging system along a path in accordance with its spatial frequency.

When multiple angular components are present at a single spatial frequency, each angu-

lar component contributes a plane wave traveling along the same path through the imaging

system. We emphasize that this interpretation is indirect—the complex exponentials and

spherical harmonics do not have a direct physical interpretation.

3.4.2 What determines the angular bandwidth?

Spatial imaging systems have a spatial bandwidth that characterizes the highest spatial

frequency that the system can transfer between object and data space. Similarly, angu-

lar imaging systems have an angular bandwidth that characterizes the highest angular fre-

quency that the system can transfer, but in the angular case there are two different types

of angular bandwidths that we call the `- and m-bandwidth. The `-bandwidth can be in-

terpreted in a similar way to the spatial bandwidth—it characterizes the smallest angular

features that the imaging system can measure. The m-bandwidth does not have a direct

analog in the spatial domain—it characterizes the angular uniformity of the imaging sys-

tem. If the `- and m-bandwidths are equal then the imaging system can be said to have an

isotropic angular bandwidth.

The spatial bandwidth of a fluorescence microscope is well known to be νc = 2NA/λ.

In other words, we can increase the spatial resolution of a fluorescence microscope by in-

creasing the NA of the instrument or by choosing a fluorophore with a shorter emission

wavelength. Similarly, the angular bandwidth of a fluorescence microscope depends on both

the instrument and the choice of fluorophore.
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The paraxial microscope we considered in this chapter has an `-bandwidth of `c = 2

and an m-bandwidth of mc = 0, so it does not have an isotropic angular bandwidth. The

`-bandwidth of the imaging system is constant for dipole imaging systems because dipole

radiators only emit in the ` = 0 and ` = 2 bands. Increasing the `-bandwidth requires us

to use quadrupole/higher-order emitters [142], structured/polarized illumination [39, 115],

or multi-photon excitation [55]. The m-bandwidth of the imaging system is 0 for paraxial

microscopes because these imaging systems are only sensitive to the inclination angle of

dipoles. Therefore, paraxial microscopes only transfer information about dipole emission

distributions that are rotationally symmetric about the optical axis. Increasing the m-

bandwidth requires a non-paraxial optical system or polarizers in the illumination/detection

path.

3.4.3 Comparing monopole and dipole models

The only case when the dipole and monopole transfer functions match exactly is when

the sample consists of dipoles that are completely constrained to the transverse plane of a

paraxial imaging system. Dipole radiators that do not lie in the transverse plane are not

well described by the monopole approximation, and the monopole approximation is worst

for axial dipoles (see Fig. 3).

Applying the monopole approximation to dipoles that are not constrained to the trans-

verse plane can lead to biased estimates of the fluorophore concentrations. To see how these

biases manifest, consider the irradiance pattern created by a disk of dipoles oriented along

the optic axis—see Figs. 3.6 or 3.10. Any reconstruction scheme that uses the monopole

approximation would attribute the irradiance pattern created by a disk of axially oriented

dipoles to a lower concentration of monopoles, which is a clear example of a biased estimate

caused by model mismatch.

However, the common justifications for the monopole approximation—that the fluo-
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rophores are rotationally unconstrained or that there are many randomly oriented fluo-

rophores in a resolvable volume—are good approximations. In both of these cases the irra-

diance contribution from axial dipoles is small compared to the contribution from transverse

dipoles, and the irradiance patterns are very similar to the pattern created by a monopole

(within 5% at NA/n0 = 0.75—compare the ` = 0 line to the monopole line in Fig. 7).

3.4.4 Towards more realistic models

The theoretical model we presented in this chapter is an extreme simplification of a real

microscope. We have ignored the effects of thick samples, refractive-index mismatch, aber-

ration, scattering, and interactions between fluorophores among others. Because of this long

list of unconsidered effects, real experiments will likely require extensions of the models

developed here.

The dipole pupil function provides the simplest way to create more realistic models from

the simple model in this chapter. Phase aberrations can be added to the dipole pupil function

with Zernike polynomials, and refractive index boundaries can be modeled by applying the

work of Gibson and Lanni to the dipole pupil function [122]. These additions will model

phase aberrations, but modeling polarization aberrations will also be necessary, and we

anticipate that vector Zernike polynomials and the Jones pupil [143–145] will be essential

tools for modeling dipole imaging systems. We will use the dipole pupil function to include

the effects of non-paraxial objectives, polarizers, and defocus in subsequent chapters.

The dipole pupil function also provides an enormous set of design opportunities. The

dipole imaging problem may benefit from spatially varying diattenuating and birefrigent

masks [76, 81]—a much larger set of possibilities than the well-explored design space of

amplitude and phase masks [70, 74, 80, 81, 146–148]. The dipole pupil function is a step

towards Green’s tensor engineering [116], and the dipole transfer functions provide a strong

framework for evaluating dipole imaging designs.
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In the simple case considered here we focused on the emission path of the microscope,

but the excitation path is equally important. Complete models will need to consider the

spatio-angular dependence of excitation. Zhenghao et al. [115] have taken steps in this

direction by considering polarized structured illumination microscopy. Rotational dynamics

and the fluorescence lifetime are also important to consider when incorporating models of

the excitation process [76, 84, 85].

Finally, we have only considered incoherent dipole radiators in this chapter, but coherent

dipole radiators have been modeled in detail by Khadir et al. [149]. We expect that extensions

of the dipole transfer functions will help simplify and generalize the coherent dipole radiation

point response function, especially when multiple coherent dipole radiators are considered.

3.5 Conclusions

We have calculated the monopole and dipole transfer functions for paraxial 4f imaging

systems and demonstrated these transfer functions with efficient simulations. We have found

that dipole radiators have an angular frequency cutoff of `c = 2, and paraxial imaging systems

have an angular frequency cutoff of mc = 0. We also found that the monopole and scalar

approximations are good approximations when the sample consists of unconstrained rotating

fluorophores or many randomly oriented fluorophores within a resolvable volume. Finally,

we found that dipole and vector optics effects become larger as rotational order increases,

and in these cases the dipole transfer functions become valuable tools.
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3.6 Appendix: Relationships between special functions

Our first task is to show that

in
{exp(inφr)

cos(nφr)
sin(nφr)

}
jincn(r)

FR2−→ (2ν)n
{exp(inφν)

cos(nφν)
sin(nφν)

}
Π(ν). (3.52)

Writing the inverse Fourier transform in polar coordinates yields

= 2n
∫ 1/2

0
dν νn+1

∫ 2π

0
dφν

{exp(inφν)
cos(nφν)
sin(nφν)

}
exp[2πiνr cos(φν − φr)]. (3.53)

The azimuthal integral can be evaluated in terms of an nth order Bessel function (for the

complex case see [1, ch. 4.111]).

= 2n2πin
{exp(inφr)

cos(nφr)
sin(nφr)

}∫ 1/2

0
dν νn+1Jn(2πνr). (3.54)

We can use the following identity [150, ch. 6.561-5]

∫ 1

0
du un+1Jn(au) = a−1Jn+1(a) (3.55)

with a change of variable u = 2ν to find the final result

= 2n2πin
{exp(inφr)

cos(nφr)
sin(nφr)

}∫ 1

0
du

2

(
u

2

)n+1
Jn(πur) = in

{exp(inφr)
cos(nφr)
sin(nφr)

}
Jn+1(πr)

2r (3.56)

= in
{exp(inφr)

cos(nφr)
sin(nφr)

}
jincn(r).

We can use the relationship in Eq. (3.52) to express the chat functions in terms of a

complex autocorrelation—see the diagram in Fig. 3.11. Starting with the definition of the
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Figure 3.11: The relationships between special functions. The chat functions are defined as
the two-dimensional Fourier transform of the squared jinc functions, and they can be cal-
culated with the two-dimensional complex autocorrelations (denoted by ?2) of the complex-
weighted rectangle functions.

nth-order chat function

chatn(ν) =
∫
R2
dr jinc2

n(|r|) exp [−2πirν] , (3.57)

we can rewrite the integrand in terms of the absolute square of a simpler function with a

known Fourier transform

chatn(ν) =
∫
R2
dr |tn(r)|2 exp [−2πirν] . (3.58)

tn(r) = inexp[inφr]jincn(r). (3.59)

Now we can apply the autocorrelation theorem to rewrite the Fourier transform as

chatn(ν) =
∫
R2
dτ Tn(τ )T ∗n(τ − ν), (3.60)

where the function to be autocorrelated can be found with the help of Eq. (3.52)

Tn(τ ) =
∫
R2
dr tn(r)exp [−2πir · τ ] = (2τ)nexp[inφτ ]Π (τ) . (3.61)
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It will be more convenient to set up the autocorrelation in Cartesian coordinates

Tn(τ ) = 2n(τx + iτy)nΠ
(√

τ2
x + τ2

y

)
. (3.62)

Plugging Eq. (3.62) into Eq. (3.60) gives

chatn(ν) = 4n
∫
R2
dτ (τ2

x + τ2
y − ντx)nΠ

(√
τ2
x + τ2

y

)
Π
(√

(τx − ν)2 + τ2
y

)
. (3.63)

We can interpret the autocorrelation as an integral over a region of overlap between a circle

centered at the origin and a circle shifted to the right by ν (a geometric lens). Using the

construction in Fig. 3.12 we can express this region as

chatn(ν) = 4n+1
 ∫ 1/2

0
τdτ

∫ cos−1 ν

0
dφτ (τ2 − ντ cosφτ )n−

∫ ν/2
0

dτx

∫ τx
ν

√
1−ν2

0
dτy(τ2

x + τ2
y − ντx)n

Π
(
ν

2

)
. (3.64)

ν

1/2

= 4 × = 4

{

cos−1(ν)

1/2

−
1/2

ν/2

1
2

√
1− ν2

}

Figure 3.12: Geometric construction for evaluating the autocorrelation. We need to integrate
over the overlapping region of two circles with radius 1/2 and distance ν between their
centers. The region is four times the difference in area between a sector of angle cos−1(ν)
and radius 1/2 and a right triangle with base ν/2 and hypotenuse 1/2.
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For n = 0:

chat0(ν) = 4
∫ 1/2

0
τdτ

∫ cos−1 ν

0
dφτ −

∫ ν/2
0

dτx

∫ τx
ν

√
1−ν2

0
dτy

Π
(
ν

2

)
, (3.65)

chat0(ν) = 1
2

[
cos−1 |ν| − |ν|

√
1− ν2

]
Π
(
ν

2

)
, (3.66)

which is a well-known result [134, 139, 151]. For n = 1:

chat1(ν) = 16
 ∫ 1/2

0
τdτ

∫ cos−1 ν

0
dφτ (τ2 − ντ cosφτ )−

∫ ν/2
0

dτx

∫ τx
ν

√
1−ν2

0
dτy (τ2

x + τ2
y − ντx)

Π
(
ν

2

)
, (3.67)

chat1(ν) = 1
2

[
cos−1 |ν| − |ν|(3− 2ν2)

√
1− ν2

]
Π
(
ν

2

)
. (3.68)

3.7 Appendix: Spherical Fourier transform of a double cone

In this appendix we evaluate the spherical Fourier transform of a normalized double-cone

angular distribution with central direction ŝ′ and cone half-angle ∆

f(cone)(̂s; ŝ′,∆) = 1
4π(1− cos ∆)Π

(
ŝ · ŝ′

2 cos ∆

)
. (3.69)

The spherical Fourier transform is

Fm`(cone)(̂s
′,∆) =

∫
S2
dŝ f(cone)(̂s; ŝ′,∆)Ym∗` (̂s). (3.70)

The limits of integration will be difficult to find unless we change coordinates to exploit

the axis of symmetry ŝ′. Since the spherical function is rotationally symmetric about ŝ′

we can rotate the function so that the axis of symmetry is aligned with ẑ and multiply by
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√
4π

2l+1Y
m∗
` (̂s′) to account for the rotation [152]

Fm`(cone)(̂s
′,∆) =

√
4π

2l + 1Y
m∗
` (̂s′)

∫
S2
dŝ f(cone)(ϑ; ẑ,∆)Y 0

` (̂s). (3.71)

In this coordinate system the double cone is independent of the azimuthal angle, so we can

evaluate the azimuthal integral and express the function in terms of an integral over ϑ:

Fm`(cone)(̂s
′,∆) = 2πYm∗` (̂s′)

∫ π
0
dϑ sinϑf(cone)(ϑ; ẑ,∆)P`(cosϑ). (3.72)

The function f(cone)(ϑ; ẑ,∆) is only non-zero on the intervals ϑ ∈ [0,∆] and ϑ ∈ [π −∆, π]

so

Fm`(cone)(̂s
′,∆) =

Ym∗` (̂s′)
2(1− cos ∆)

[∫ ∆

0
dϑ sinϑP`(cosϑ) +

∫ π
π−∆

dϑ sinϑP`(cosϑ)
]
. (3.73)

Applying a change of coordinates with u = cosϑ yields

Fm`(cone)(̂s
′,∆) =

Ym∗` (̂s′)
2(1− cos ∆)

[∫ 1

cos ∆
dϑP`(u) +

∫ − cos ∆

−1
dϑP`(u)

]
. (3.74)

The Legendre polynomials P`(u) are even (odd) on the interval [−1, 1] when ` is even (odd),

so the pair of integrals will be identical when ` is even and cancel when ` is odd. For even `,

Fm`(cone)(̂s
′,∆) =

Ym∗` (̂s′)
1− cos ∆

∫ 1

cos ∆
dϑP`(u). (3.75)

The integral evaluates to [150, ch. 7.111]

∫ 1

cos ∆
dϑP`(u) =


1− cos ∆ , ` = 0 ,

sin ∆P−1
l (cos ∆) , else,

(3.76)
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where P−1
l (cos ∆) is the associated Legendre polynomial with order m = −1, not an inverse

Legendre polynomial. Bringing everything together

Fm`(cone)(̂s
′,∆) =



√
1/(4π), ` = 0,

0, ` odd,

Ym∗` (̂s′) cot
(∆

2
)
P−1
l (cos ∆), ` > 0 even.

(3.77)
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CHAPTER 4

CONSTRAINED ANGULAR DIFFUSION, POLARIZED

EXCITATION, AND HIGH-NA IMAGING

Burn the great sphere thou mov’st in!
— William Shakespeare, Antony and Cleopatra (1606)

We investigate rotational diffusion of fluorescent molecules in angular potential wells,

the excitation and subsequent emissions from these diffusing molecules, and the

imaging of these emissions with high-NA aplanatic optical microscopes. Although dipole

emissions only transmit six low-frequency angular components, we show that angular struc-

tured illumination can alias higher frequency angular components into the passband of the

imaging system. We show that the number of measurable angular components is limited by

the relationships between three time scales: the rotational diffusion time, the fluorescence

decay time, and the acquisition time. We demonstrate our model by simulating a numerical

phantom in the limits of fast angular diffusion, slow angular diffusion, and weak potentials.

4.1 Introduction

Rotational diffusion plays an important role in every fluorescence experiment. Stokes’ 1852

investigation of fluorescence (which led him to coin the word “fluorescence”) reported no

apparent polarization of the light emitted by a fluorescing solution of quinine [13]. We

now understand that his observation reflects the relative time scales of angular diffusion,

fluorescence decay, and measurement acquisition [153]. Angular diffusion of quinine (∼0.3 ns

rotational relaxation time) is fast compared to its fluorescence lifetime (∼20 ns), which is fast

compared to Stokes’ acquisition time (∼0.1 s for human vision). Even though each individual

emission is polarized, diffusive reorientation of each fluorophore results in randomly polarized

emissions that result in no apparent polarization when averaged over the measurement time.
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These relationships were elucidated by several investigators in the 1920s. Weigert demon-

strated that decreasing the rotational mobility of fluorescent molecules (by increasing the

viscosity of the solvent or decreasing the temperature) resulted in increasingly polarized fluo-

rescent emissions [18]. Wawilow and Lewschin observed that different dyes displayed varying

relationships between the rotational mobility and the polarization of the fluorescent emis-

sions [19], and Francis Perrin explained these variations by accounting for the fluorescence

lifetime of the fluorophores [20]. Perrin’s synthesis inspired Weber to develop modern fluo-

rescence polarization assays for biological applications [22, 23]. See Jameson’s review [153]

for English summaries of the papers cited in this paragraph.

Since Weber’s work, fluorescence polarization assays have been used to deduce informa-

tion from a wide range of samples in solution—see Lakowicz [25, chs. 10–12] for a review.

More recently, fluorescence polarization imaging assays have been developed to image rota-

tionally constrained fluorophores that label biological structures [37, 39, 48, 51, 55, 59, 115].

Furthermore, breakthroughs in single-molecule localization microscopy have led to assays

that measure the position, orientation, and rotational dynamics of single molecules [61, 66,

68, 74, 85, 119]. All of these techniques use a model of rotational diffusion and the imag-

ing process to interpret the collected data, and any mismatch between the model and the

experiment could limit the accuracy of these interpretations.

Several recent works have modeled the images created by rotating single molecules under

angular constraints [67, 76, 78, 82], and this chapter refines and extends these models. First,

we consider angular potentials more general than those that are rotationally symmetric about

a single axis. Modeling general potentials reduces the number of assumptions required

to interpret data and creates opportunities for designing instruments that can draw new

conclusions. Second, we consider in detail how the angular potential affects angular diffusion.

Existing works have assumed that angular diffusion can be described by a monoexponential

decay, while here we use the Smoluchowski equation to show that angular diffusion is multi-

88



exponential with time constants that depend on the potential. Third, we consider the effects

of fluorescence saturation on the spatio-angular imaging process. We show that exploiting

saturation can enable measurements of high-frequency angular components. Finally, we

efficiently model arbitrary spatio-angular distributions of fluorescent emitters including but

not limited to single molecules. These modeling improvements make several new predictions

that may guide future experiments and improve the interpretation of existing data.

In chapters 2 and 3, we described the organization of our theory, described spatio-angular

imaging operators and how they can be expressed in different bases, then calculated spatio-

angular imaging operators for a paraxial 4f imaging system. In this chapter, we build on

our framework and incorporate angular diffusion within a potential, polarized excitation,

and high-NA imaging.

The chapter is organized as follows. In section 4.2 we develop models for spatio-angular

diffusion, excitation, emission, and imaging. After introducing our notation (section 4.2.1),

we build on the work of Jones [154] and Schulten et al. [155] to describe angular diffusion of

one-state dipoles within asymmetric (section 4.2.2) and symmetric potentials (section 4.2.3).

Next, we describe the diffusion of two-state molecules and their emissions under strong

(section 4.2.4), and weak excitation (section 4.2.5–4.2.6). In section 4.3 we create a numerical

phantom, specify an imaging system, then simulate imaging results. Finally, in section 4.4

we discuss our results and their implications.

4.2 Theory

4.2.1 Notation

We use roman fonts for scalars and functions (e.g. t, f), bold fonts for vectors (e.g. f , s), and

blackboard bold for manifolds and vector spaces (e.g. S2, R3). We use hats to denote unit

vectors (e.g. ŝ, ê), and we use {êi} to denote a set of orthonormal standard basis vectors.
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We briefly review notation for functions that map points on the sphere S2 onto the real

numbers R. We denote these spherical functions by f (̂s) where ŝ ∈ S2, and we denote their

associated Hilbert-space vectors by f ∈ L2(S2). We define an inner product for this Hilbert

space as

(f1, f2) =
∫
S2
dŝ f1(̂s)f2(̂s), (4.1)

and we use this inner product to confirm that the non-denumerable set of standard basis

vectors {ê(̂s)} = {[1, 0, 0 . . .], [0, 1, 0, . . .], . . . , [. . . , 0, 0, 1]} satisfy

(
ê(̂s), ê(̂s′)

)
= δ(̂s− ŝ′), (4.2)

where δ(̂s− ŝ′) is the Dirac delta on the sphere. We can construct an alternative orthonormal

basis using the real-valued spherical harmonic functions Y`m(̂s) which satisfy

∫
S2
dŝY`m(̂s)Y`′m′ (̂s) = δ``′δmm′ , (4.3)

where ` ∈ {0, 1, 2, . . .} and m ∈ {−`,−`+ 1, . . . `− 1, `}. The new basis vectors are

Ê`m =
∫
S2
dŝY`m(̂s)ê(̂s), (4.4)

which satisfy

(
Ê`m, Ê`′m′

)
= δ``′δmm′ , (4.5)(

ê(̂s), Ê`m
)

=
(
Ê`m, ê(̂s)

)
= Y`m(̂s). (4.6)
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We can expand arbitrary Hilbert-space vectors f ∈ L2(S2) in either basis as

f =
∫
S2
dŝ f (̂s)ê(̂s) =

∞∑
`=0

∑̀
m=−`

F`mÊ`m. (4.7)

The coefficients f (̂s) can be found by taking the inner product of both sides of Eq. (4.7)

with the basis vectors ê(̂s) and exploiting orthonormality

f (̂s) = (ê(̂s), f). (4.8)

We can proceed similarly for the coefficients F`m then write these coefficients in terms of

f (̂s)

F`m = (Ê`m, f) =
∫
S2
dŝ (Ê`m, ê(̂s))(ê(̂s), f) =

∫
S2
dŝY`m(̂s)f (̂s), (4.9)

which is usually called the spherical Fourier transform.

We denote Hilbert-space operators with capital calligraphic letters H. Hilbert-space

operators act on Hilbert-space vectors to create other Hilbert-space vectors g = Hf , and

we can express the action of H concretely by choosing a basis for g and f . For example, if

H : L2(S2)→ L2(R2) then we can choose the standard basis for both the input and output

spaces and write

g = Hf , (4.10)

(ê(r),g) =
∫
S2
dŝ
(
ê(r),Hê(̂s)

)
(ê(̂s), f), (4.11)

g(r) =
∫
S2
dŝh(r, ŝ)f (̂s), (4.12)

where h(r, ŝ) = (ê(r),Hê(̂s)) are the standard entries of H.
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We can calculate the entries of H in a different basis by relating them to the standard

entries. For example

H`m(r) ≡ (ê(r),HÊ`m) =
∫
S2
dŝ (ê(r),Hê(̂s)) (ê(̂s), Ê`m) =

∫
S2
dŝh(r, ŝ′)Y`m(̂s). (4.13)

Finally, we denote adjoint operators with a dagger † using the definition

(f1,Hf2) = (H†f1, f2). (4.14)

4.2.2 Dipole angular diffusion in arbitrary potentials

Consider a rigid molecule with orientation R ∈ SO(3)—a 3 × 3 orthogonal matrix with

determinant +1. We let ω(R, t) denote the probability of finding the molecule in orientation

R at time t. Our goal is to develop a useful model for the time evolution of ω(R, t) given

an initial condition ω(R, 0).

We start by assuming that the molecule’s orientation can be completely described by

a single absorption/emission dipole axis ŝ. To apply this assumption, we parameterize the

molecule’s orientation using an axis-angle representation R = (̂s, ψ), where ŝ ∈ S2 specifies

the dipole axis and ψ ∈ [0, 2π) specifies a rotation about ŝ. With this parameterization

we can apply the assumption by ignoring ψ and considering the time evolution of ω(̂s, t).

We also know that dipole absorber/emitters are symmetric under inversion, so we constrain

our distributions to be of the form ω(̂s, t) = ω(−ŝ, t). Finally, we normalize our probability

distribution using

∫
S2
dŝω(̂s, t) = 1. (4.15)
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We can model the time evolution of ω(̂s, t) using the Smoluchowski equation

∂ω(̂s, t)
∂t

= ∇ ·D(̂s) [∇ω(̂s, t) + βω(̂s, t)∇v(̂s)] , (4.16)

where v(̂s) is an arbitrary angular potential (for example, from an external field or a molecular

bond), ∇ is the spherical gradient operator, ∇· is the spherical divergence operator, D(̂s)

is an orientation-dependent angular diffusion tensor, and β = 1/kBT with kB Boltzmann’s

constant and T temperature. Although we point readers elsewhere for a derivation [155–

157], Eq. (4.16) is plausible at a glance. The first term in brackets models diffusion down

a concentration gradient, and the second term models torques due to the potential. The

orientation-dependent angular diffusion tensor scales and rotates the gradients. Next, the

divergence sums over all neighboring orientations to find the total change in ω(̂s, t). We note

that Eq. (4.16) assumes that inertial terms are negligible and that the torques can be related

to a scalar potential.

Next, we assume that the molecule behaves like a spherical rotor—the diffusion tensor is

homogeneous (independent of ŝ) and isotropic (independent of angular diffusion direction)—

so we can replace D(̂s) with a single constant D

∂ω(̂s, t)
∂t

= D∇ · [∇ω(̂s, t) + βω(̂s, t)∇v(̂s)] . (4.17)

This assumption is widely used in fluorescence microscopy [67, 76, 78, 82], and it provides

a reasonable approximation for globular emitters like green fluorescent protein. Other in-

vestigators have modeled fluorescence from non-spherical rotors in solution [25, 158] and

non-fluorescent diffusion of non-spherical rotors in a potential [157], while here we focus on

modeling fluorescence from spherical rotors in a potential.

We can rewrite Eq. (4.17) in terms of Hilbert-space vectors and operators by collecting

the ŝ dependence of ω(̂s, t) and v(̂s) into boldface vectors ω(t) =
∫
S2 dŝω(̂s, t)ê(̂s) and
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v =
∫
S2 dŝ v(̂s)ê(̂s) then writing

∂ω(t)
∂t

= D∇ · [∇ω(t) + βω(t)∇v] = −Dvω(t), (4.18)

where Dv = −D∇ · [∇+ β∇v] is the Smoluchowski operator with arbitrary potential v and

the negative sign is included for convenience.

Eq. (4.18) is a homogeneous system of linear first-order differential equations. A typ-

ical approach is to expand ω into a linear combination of eigenfunctions of Dv, but it is

not obvious that a complete set of eigenfunctions exists. To show that a complete set of

eigenfunctions does exist we follow Schulten et al. [155] and rewrite Dv as

Dv = −D∇ · exp(−βv)∇ exp(βv). (4.19)

In this form it is straightforward to confirm that

WDvW−1 = B†B, (4.20)

where

W = exp(βv/2), (4.21)

B =
√
D exp(−βv/2)∇ exp(βv/2), (4.22)

B† = −
√
D exp(βv/2)∇ · exp(−βv/2), (4.23)

and we have used the following operator identity (the adjoint of the gradient is the negative

divergence)

∇† = −∇ · . (4.24)

94



Eq. (4.20) shows that Dv is similar to a Hermitian operator [1, ch. 1.4], and Hermitian oper-

ators have real non-negative eigenvalues λv,i and a complete set of orthogonal eigenfunctions

ψv,i that satisfy

WDvW−1ψv,i = λv,iψv,i. (4.25)

Applying W−1 to both sides yields

DvW−1ψv,i = λv,iW−1ψv,i, (4.26)

Dvφv,i = λv,iφv,i, (4.27)

which shows that we can find a complete (though not necessarily orthogonal) set of eigen-

functions for Dv by calculating φv,i =W−1ψv,i. Additionally, we have shown that Dv has

real non-negative eigenvalues, so we can labels its eigenvalues in order

0 ≤ λv,0 ≤ λv,1 ≤ λv,2 ≤ λv,3 ≤ · · · . (4.28)

Now that we have confirmed that Dv has a complete set of eigenvectors, we can write

the general solution of Eq. (4.18) as

ω(t) =
∞∑
i=0

cv,iφv,i exp(−λv,it), (4.29)

where cv,i are constants determined by the initial condition.

From statistical mechanics we expect the Boltzmann distribution to be a steady-state

solution. We can confirm this expectation by plugging the Boltzmann distribution

φv,0 = Z−1
v exp(−βv), (4.30)
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where Zv is the partition function

Zv =
∫
S2
dŝ exp(−βv(̂s)), (4.31)

into Eq. (4.18) and confirming that it is an eigenfunction of Dv with a zero eigenvalue. We

also expect the Boltzmann distribution to be the unique steady-state solution—the only

eigenfunction with a zero eigenvalue. We point readers elsewhere for a physical argument

that this is true [155], but we remark that a single steady-state solution depends on v(̂s)

being square-integrable. For example, a non-square-integrable potential could have two

potential wells separated by an infinite potential, and in this case we would expect multiple

steady-state solutions.

Finally, we calculate the coefficients cv,i in terms of the initial condition ω(0). The naive

approach of taking the inner product of both sides of Eq. (4.29) with the eigenfunctions

(φv,i, ·) will fail because the eigenfunctions are not orthogonal. Instead, we construct a

biorthogonal set by solving the eigenvalue problem for the adjoint Smoluchowski operator.

If we write the adjoint Smoluchowski operator in the form

D†v = −D exp(βv)∇ · exp(−βv)∇, (4.32)

then it is straightforward to confirm that

D†v

(
φv,i
φv,0

)
= λi

(
φv,i
φv,0

)
, (4.33)

where the division of Hilbert-space vectors is elementwise. Therefore, (φv,i/φv,0) are eigen-

functions of D†v, and these functions form a biorthogonal set with the eigenfunctions of Dv.
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We can normalize so that these functions form a biorthonormal set that satisfies

(
φv,i
φv,0

,φv,j

)
= δij . (4.34)

Now we can take the inner product of both sides of Eq. (2.60) with the eigenfunctions of D†v

and solve for cv,i in terms of the initial condition

cv,i =
(
φv,i
φv,0

,ω(0)
)
. (4.35)

Therefore, the solution takes the form

ω(t) =
∞∑
i=0

(
φv,i
φv,0

,ω(0)
)
φv,i exp(−λv,it). (4.36)

We can use these results to draw several conclusions for diffusion under arbitrary poten-

tials. The fact that the eigenvalues are real implies that the solutions will never oscillate—this

is expected since we are ignoring inertial effects. The fact that the eigenvalues are positive

except for a single zero eigenvalue implies that our solutions will always decay to the Boltz-

mann distribution ω(t → ∞) = φv,0. The smallest non-zero eigenvalue λv,1 will set the

time scale of the decay, so we know that ω(t � 1/λv,1) ≈ φv,0. Finally, the decay of ω(t)

will be monoexponential if the initial condition is either an eigenfunction of Dv or a linear

combination of eigenfunctions of Dv that share an eigenvalue.

4.2.3 Dipole angular diffusion in symmetric potentials

Next, we consider how symmetric potentials can constrain the form of the solution. If

the potential is rotationally symmetric (v(̂s) is constant) then the Smulochowski equation
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reduces to the diffusion equation

∂ω(t)
∂t

= D∆ω(t) = −Dcω(t), (4.37)

where ∆ is the spherical Laplacian, and Dc = −D∆. This equation has a well-known

solution—the eigenfunctions of Dc that satisfy the biorthonormality relation Eq. (4.34) are

the renormalized spherical harmonics φc,`m = Ê`m/
√

4π with eigenvalues λc,`m = D`(`+1),

which we can plug into Eq. (4.36) to find that

ω(t) =
∞∑

`=0,2,4...

∑̀
m=−`

(
Ê`m,ω(0)

)
Ê`m exp(−D(`(`+ 1)t)). (4.38)

Eq. (4.38) has a simple form when expressed in terms of the spherical harmonic coefficients

Ω`m

(Ê`m,ω(t)) ≡ Ω`m(t) = Ω`m(0) exp(−D`(`+ 1)t). (4.39)

An essential feature of this solution is that each eigenvalue λc,`m forms a multiplet with

2`+1 other eigenvalues indexed by m. This fact allows us to split the single eigenvalue index

i in Eq. (4.36) into a pair of indices (`,m) in Eq. (4.38).

The multiplicity of eigenvalues reduces the number of decay components in the solution.

For example, if the initial condition is bandlimited to ` = 2, that is (Ê`m,ω(0)) 6= 0 for ` = 0

and ` = 2 only, then the 6-dimensional initial distribution will decay towards the Boltzmann

distribution monoexponentially with time constant (6D)−1.

We can predict eigenvalue multiplets by studying the symmetry group of the operator

Dv [1, ch. 6.7], and we will use the rotationally symmetric example Dc to illustrate this pro-

cess. First, we identify the symmetry group of the operator by finding the set of operators

that commute with Dv. All three-dimensional rotation operators commute with Dc because
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rotating the potential leaves it unchanged. Therefore, we identify the symmetry group of

Dc as SO(3). Next, we find the irreducible representations of the symmetry group—sets

of irreducible matrices assigned to each group element where matrix multiplication repro-

duces the group composition rule. An irreducible representation that uses N×N matrices is

said to be N -dimensional. Irreducible representations can be calculated from scratch, but in

practice they can almost always be found in the literature [159, 160]. The irreducible repre-

sentations of SO(3) are the Wigner D-matrices D`(R) where ` = 0, 1/2, 1, 3/2, 2, . . . indexes

the (2` + 1)-dimensional irreducible representations and R indexes the elements of SO(3).

Finally, eigenvalue N -plets correspond to the N -dimensional irreducible representations of

the symmetry group of Dv. Dc has irreducible representations of integer dimension, so there

will be at most an N -plet for each natural number N .

Some of the multiplets may not appear in the solution due to symmetries of the distribu-

tion ω(R). For example, we expect ω(̂s, ψ)=ω(̂s, ψ+2π) which implies that (φc,`m,ω(0))=0

for half-integer ` [1, ch. 6.7]. Similarly, we expect ω(̂s, ψ) = ω(−ŝ, ψ) which implies that

(φc,`m,ω(0)) = 0 for odd `. The remaining multiplets correspond to even integer `, which

means we can expect a singlet, a 5-plet, a 9-plet, etc. This explains the multiplet structure

of Eq. (4.38).

Several works have considered axially symmetric potentials that can be written in the

form v(̂s · ŝc), where ŝc is the axis of symmetry [78, 154]. In this case rotating the potential

about the axis of symmetry commutes with the Smoluchowski operator. Additionally, rotat-

ing the potential by π about any axis orthogonal to the symmetry axis also commutes. We

can identify this set of rotations as members of the group O(2)—2× 2 orthogonal matrices.

The irreducible representations of O(2) are one- and two-dimensional [159], so multiplets can

be at most doublets. Jones demonstrates how perturbing a rotationally symmetric potential

to an axially symmetric potential splits the eigenvalue spectrum into singlets and doublets

[154]—the original singlet is maintained, the 5-plet splits into a singlet and two doublets,
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the 9-plet splits into a singlet and four doublets, etc.

Note that perturbing the potential also perturbs the eigenfunctions, so the spherical

harmonics will not be eigenfunctions for an axially symmetric Smoluchowski operator. Per-

turbing the potential from complete rotational symmetry will always create eigenfunctions

that are not bandlimited, so bandlimited initial conditions will decay via a superposition of

an infinite number of exponentials.

4.2.4 Two-state diffusion and polarized excitation

Now we extend our model to a molecule that can be in two states. We define two functions

w(gr)(̂s, t) and w(ex)(̂s, t) as the probabilities that the molecule is in the ground or excited

state, respectively, in orientation ŝ at time t. We normalize so that

∫
S2
dŝ
[
w(gr)(̂s, t) + w(ex)(̂s, t)

]
= 1. (4.40)

Next, we define the associated Hilbert-space vectors w(gr)(t) and w(ex)(t), a molecular-

species specific decay rate constant κ(d), and a polarization-dependent excitation operator

K(ex)
p̂ (parameterized by an arbitrary polarization state p̂) that encodes the orientation-

dependent excitation rate. We assume that the molecule diffuses in the same potential while

it is in the ground and excited state, so we can model the time-evolution of the molecule as

∂

∂t

w(ex)(t)

w(gr)(t)

 =

Dv − κ(d) K(ex)
p̂

κ(d) Dv −K
(ex)
p̂


w(ex)(t)

w(gr)(t)

 . (4.41)

This model assumes that stimulated emission is negligible. This assumption is justified when

the newly excited molecule undergoes fast vibrational relaxation to a state that is unaffected

by stimulated emission from the original excitation beam. In this two-state model the mean

excited-state lifetime is given by τe = 1/κ(d).
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Our goal is to model the observable irradiance emitted by the molecule as it decays from

the excited state to the ground state. If we expose a detector from t = t0 to t = t1, then the

most we can hope to recover from our measurement is

w =
∫ t1
t0

dt κ(d)w(ex)(t), (4.42)

which we call the point emission density. Calculating w will almost always require numerics,

but we can find closed-form solutions in several specific cases.

For example, if we assume that diffusion is slow compared to the decay rate constant and

the maximum excitation rate constant D � κ(d), κ(ex)max, then we can ignore Dv and write

∂

∂t

w(ex)(t)

w(gr)(t)

 =

−κ(d) K(ex)
p̂

κ(d) −K(ex)
p̂


w(ex)(t)

w(gr)(t)

 . (4.43)

If we excite with coherent light polarized linearly along direction p̂ ∈ S2, then the standard

entries of the excitation operator are

(
ê(̂s),K(ex)

p̂ ê(̂s′)
)

= κ(ex)|p̂ · ŝ|2δ(̂s− ŝ′), (4.44)

where κ(ex) is the maximum excitation rate constant, which is proportional to the intensity

of the excitation beam. Rewriting the whole system in a standard basis yields

∂

∂t

w(ex)(̂s, t)

w(gr)(̂s, t)

 =

−κ(d) κ(ex)|p̂ · ŝ|2

κ(d) −κ(ex)|p̂ · ŝ|2


w(ex)(̂s, t)

w(gr)(̂s, t)

 . (4.45)

If the molecule starts in the ground state w(gr)(̂s, 0) = 1/4π and w(ex)(̂s, 0) = 0, then the
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solution is given by

w(ex)(̂s, t)

w(gr)(̂s, t)

 = 1
κ(ex)|p̂ · ŝ|2 + κ(d)

κ(ex)|p̂ · ŝ|2
κ(d)

+ (4.46)

κ(ex)|p̂ · ŝ|2

κ(ex)|p̂ · ŝ|2 + κ(d)

−1

1

 exp[−(κ(ex)|p̂ · ŝ|2 + κ(d))t].

A particularly interesting result is the steady-state probability of finding the molecule in the

excited state

w(ex)(θ, t� κ(ex) + κ(d)) = cos2 θ

cos2 θ +
[
κ(d)/κ(ex)

] , (4.47)

where θ is the angle between p̂ and ŝ.

Figure 4.1 shows the behavior of Eq. (4.47) as θ and κ(d)/κ(ex) are varied. For strong ex-

citation, κ(d)/κ(ex) � 1 and the excited state saturates and contains high angular-frequency

patterns. These patterns are directly analogous to the high spatial-frequency patterns gen-

erated in non-linear structured illumination microscopy [161].

For weak excitation, κ(d)/κ(ex) � 1 and the cos2 θ in the denominator of Eq. (4.47) is

dwarfed, so the excited state probability is proportional to cos2 θ. In this limit we are far

from saturating the excited state, and the excited-state probability is linear in the excitation

power.

4.2.5 Two-state diffusion under weak polarized excitation

In the weak excitation limit, κ(d)/κ(ex) � 1, we can approximate the two-state model us-

ing an effective one-state model. If the molecule starts in the ground state and the molecule

has diffused to the steady state then w(gr)(0) = φv,0. Under weak excitation the probabil-

ity of excitation is small, so the ground state probability will stay approximately constant
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Figure 4.1: Diffusion-free steady-state excited-state probability w(ex) (radius from center)
as a function of the angle from the incident polarization θ (clockwise angle from positive x
axis) and the detection rate to excitation rate ratio κ(d)/κ(ex) (color). For weak excitation
κ(d)/κ(ex) � 1 the excited-state probability is small and only contains low angular-frequency
components. For strong excitation κ(d)/κ(ex) � 1 the excited state is saturated and contains
high angular-frequency components.

w(gr)(t) ≈ φv,0. Our remaining task is to solve for the excited-state probability, which

evolves according to

∂w(ex)(t)
∂t

= −
(
Dv + κ(d)

)
w(ex)(t) +K(ex)

p̂ φv,0. (4.48)

Eq. (4.48) is an inhomogeneous system of linear first-order differential equations. To solve

Eq. (4.48), we start by noticing that the operator
(
Dv + κ(d)

)
has the same eigenfunctions

as Dv with larger eigenvalues λv,i + κ(d). Next, we find the steady-state solution by setting

the left-hand side to zero

w(ex)(∞) =
(
Dv + κ(d)

)−1
K(ex)

p̂ φv,0 =
∞∑
i=0

1
λv,i + κ(d)

(
φv,i
φv,0

,K(ex)
p̂ φv,0

)
φv,i. (4.49)
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We can find the homogeneous solution w(ex)
h (t) by ignoring the constant term to find

w(ex)
h (t) =

∞∑
i=0

cv,iφv,i exp
[
−
(
λv,i + κ(d)

)
t
]
. (4.50)

The complete solution is given by the sum of the homogenous solution and the steady-state

solution

w(ex)(t) = w(ex)
h (t) + w(ex)(∞). (4.51)

If we begin exposing a detector for a period te after the system has reached a steady state

at t1 � 1/κ(d) then the point emission density is given by

w =
∫ t1+te

t1
dt κ(d)w(ex)(∞) (4.52)

w =
∞∑
i=0

teκ
(d)

λv,i + κ(d)

(
φv,i
φv,0

,K(ex)
p̂ φv,0

)
φv,i. (4.53)

Eq. (4.53) is the main result of this section, and we briefly consider it more closely for cases

when diffusion is very slow and very fast.

In the fast diffusion limit
(
λv,i � κ(d) for all i > 0

)
all of the terms in Eq. (4.53) are

negligible except for the i = 0 term and the result simplifies to

w
(fast)= te

(
1,K(ex)

p̂ φv,0
)
φv,0, (4.54)

which means that the measurable angular distribution is the Boltzmann distribution weighted

by a constant excitation efficiency. Informally, Eq. (4.54) says that a fast diffusing dipole

reaches the Boltzmann distribution before emission, so the emission density is the Boltzmann

distribution multiplied by a constant excitation efficiency.

In the slow diffusion limit
(
λv,i � κ(d) for all i

)
, every term in Eq. (4.53) contributes
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and the sum simplifies to

w
(slow)= teK

(ex)
p̂ φv,0, (4.55)

which means that the measurable angular distribution is the excitation operator acting on

the Boltzmann distribution. Informally, Eq. (4.55) says that a slow diffusing dipole does

not rotate before emission, so the point emission density is the point-wise product of the

excitation efficiency function and the Boltzmann distribution. This situation is the angular

analog to linear structured illumination microscopy [162], where spatial diffusion is assumed

to be negligible and illumination patterns can be used to alias high-frequency spatial patterns

into the passband of the imaging system.

4.2.6 Weak excitation of a free dipole

In the absence of a potential, the eigenvalues become λc,`m = D`(`+1) and the eigenfunctions

become φc,`m = Ê`m/
√

4π (see section 4.2.3). Plugging these into Eq. (4.53) yields

w
(free)=

∞∑
`=0

∑̀
m=−`

teκ
(d)

D`(`+ 1) + κ(d)

(
Ê`m,K

(ex)
p̂ /4π

)
Ê`m. (4.56)

For linearly polarized coherent illumination we can write Eq. (4.56) in the standard basis as

w(θ) (free)= teκ
(ex)

12π

[
1 + 3 cos2 θ − 1

1 + [6D/κ(d)]

]
, (4.57)

where θ is the angle between p̂ and ŝ. Figure 4.2 shows the behavior of Eq. (4.57) as θ and

6D/κ(d) are varied. For slow diffusion (6D/κ(d) � 1) the point emission density is identical

to the excitation probability |p̂ · ŝ|2, and for fast diffusion (6D/κ(d) � 1) the point emission

density is the constant Boltzmann distribution.

Notice that the infinite sum in Eq. (4.56) reduces to two non-zero terms in Eq. (4.57)
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Figure 4.2: Weak-excitation emission density for a free dipole w (radius from center) as
a function of the angle from the incident polarization θ (clockwise angle from positive x
axis) and the diffusion rate to decay rate constant ratio 6D/κ(d) (color). For slow diffu-
sion 6D/κ(d) � 1 the emission density is the excitation probability, and for fast diffusion
6D/κ(d) � 1 the excited emission density is the constant Boltzmann distribution.

because coherent polarized illumination excites the (constant) Boltzmann distribution into

a linear combination of six eigenfunctions that have only two distinct eigenvalues. For

asymmetric potentials, coherent polarized illumination will excite the Boltzmann distribution

into a linear combination of an infinite number of eigenfunctions, so the solution will contain

an infinite number of terms.

4.2.7 Spatio-angular emission densities

So far we have been considering point emission densities w ∈ L2(S2) for single molecules at a

single point in space. In this section we will extend our discussion to ensembles of molecules

and three-dimensional angular emission densities represented by vectors f ∈ L2(R3 × S2).

We start by defining a spatio-angular dynamics model similar to the angular dynamics

model in section 4.2.4. First, we define a pair of functions f (gr)(ro, ŝo, t) and f (ex)(ro, ŝo, t)

as the number of molecules in the ground and excited states, respectively, at position
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ro ∈ R3, in orientation ŝ ∈ S2, and at time t (per unit volume, solid angle, and time).

These unnormalized functions are related to the normalized functions we considered earlier

by

f (gr)(ro, ŝo, t) = ρ(ro, t)w(gr)(ro, ŝo, t), (4.58)

f (ex)(ro, ŝo, t) = ρ(ro, t)w(ex)(ro, ŝo, t), (4.59)

where ρ(ro, t) is an orientation-independent spatial density—the number of fluorescent

molecules per unit volume at point ro. We also define the associated Hilbert-space vec-

tors f (gr)(t) and f (ex)(t). Next, we define a spatio-angular potential v, a Smoluchowski

operator Dv that models how molecules diffuse in the spatio-angular potential v, a spatio-

angular excitation operator K(ex)
p̂ , and a decay rate constant κ(d). With these definitions we

can model the spatio-angular populations with

∂

∂t

f (ex)(t)

f (gr)(t)

 =

Dv − κ(d) K
(ex)
p̂

κ(d) Dv −K
(ex)
p̂


f (ex)(t)

f (gr)(t)

 . (4.60)

We are interested in the spatio-angular emission density during an exposure from t0 to t1

given by

f =
∫ t1
t0

dt κ(d)f (ex)(t). (4.61)

If spatial diffusion is negligible, then the spatio-angular model in Eq. (4.60) decouples

into an angular model at each point weighted by a time-independent spatial density ρ(ro),

so we can write

f(ro, ŝo) = ρ(ro)w(ro, ŝo). (4.62)
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For each spatial point ro we can use the angular solutions developed in sections 4.2.4–4.2.6

to calculate w(ro, ŝo).

4.2.8 Spatio-angular imaging operator

In this section we complete our imaging model by finding the mapping between the spatio-

angular emission density f and the data we measure g. It will be convenient to choose a

basis for f that splits the object-space spatial coordinates into a one-dimensional longitu-

dinal coordinate ro aligned with the optical axis of the microscope, and a two-dimensional

transverse coordinate r⊥o . More specifically, we express f in the following basis

f(r⊥o , ro , ŝo) = (ê(r⊥o )ê(ro)ê(̂s), f). (4.63)

Next, we model the irradiance measured at each point on a planar detector with the func-

tion g(rd) with rd ∈ R2 or its associated Hilbert-space vector g ∈ L2(R2). Finally, we

model the mapping between emission densities and data with a Hilbert-space operator

H : L2(R3 × S2)→ L2(R2) that acts on f

g = Hf . (4.64)

Several works [73, 76, 78, 80] have calculated the standard entries ofH for an aplanatic 4f

optical system with a paraxial tube lens and unit magnification (or demagnified coordinates)

as

h(rd, r⊥o , ro , ŝo) ≡
(
ê(rd),Hê(r⊥o )ê(ro)ê(̂so)

)
=

∑
i=0,1

|ci(rd − r⊥o , ro , ŝo)|2, (4.65)

108



where

ci(r⊥, ro , ŝo) =
∫
R2
dτ Ci(τ , ro , ŝo) exp[i2πτ · r⊥] (4.66)

is the ith component of the dipole coherent spread function,

Ci(τ , ro , ŝo) = A(τ )Φ(τ , ro)
∑

j=0,1,2
gij(τ )sj (4.67)

is the ith component of the dipole coherent transfer function,

A(τ ) = (1− |τ |2)−1/4Π (|τ |/νc) (4.68)

is the aplanatic apodization function with full width νc = 2NA/λ,

Φ(τ , ro) = exp
[
i2πro

√
ν2
m − |τ |2

]
(4.69)

is a phase-encoding function with νm = n0/λ, the functions gij(τ ) model the ith field

components in the pupil plane created by the jth component of a dipole

g00(τ ) = sin2 φτ + cos2 φτ
√

1− |τ |2, g10(τ ) = 1
2 sin(2φτ )

(√
1− |τ |2 − 1

)
,

g01(τ ) = 1
2 sin(2φτ )

(√
1− |τ |2 − 1

)
, g11(τ ) = cos2 φτ + sin2 φτ

√
1− |τ |2,

g02(τ ) = |τ | cosφτ , g12(τ ) = |τ | sinφτ , (4.70)

and sj is the jth component of the dipole unit vector ŝo. This model is accurate for objectives

with arbitrarily high numerical apertures (provided the objective is free from aberration and

satisfies the aplanatic condition). Eqs. (4.68)–(4.70) model the apodization, phase shifts,

and directional electric fields in high-NA optical systems, and in chapter 3 we constructed

paraxial models by approximating these functions with low-order polynomials. Modeling a
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mask in the back aperture of the objective can be accomplished by modifying the amplitude

A or phase Φ functions. Following Stallinga [78], we can rewrite the standard entries in a

form that is more efficient for computation

h(rd, r⊥o , ro , ŝo) =
∑

j,j′=0,1,2
Bjj′(rd − r⊥o , ro)sjsj′ , (4.71)

where

Bjj′(r⊥, ro) =
∑
i=0,1

βij(r⊥, ro)β∗ij′(r
⊥, ro), (4.72)

and

βij(r⊥, ro) =
∫
R2
dτ A(τ )Φ(τ , ro)gij(τ ) exp[i2πτ · r⊥]. (4.73)

For general amplitude and phase masks, six Fourier transforms need to be computed for

each defocus position. If the amplitude and phase masks are radial (A(τ ) and Φ(τ , ro) are

independent of φτ ), then we can exploit the following symmetries

β00(r⊥, ro) = β11(Rπ/2r⊥, ro), (4.74)

β01(r⊥, ro) = β10(r⊥, ro), (4.75)

β02(r⊥, ro) = β12(Rπ/2r⊥, ro), (4.76)

where Rπ/2 is an operator that rotates transverse coordinates by π/2, and only compute

three Fourier transforms per defocus position.

We can calculate the entries of H in other bases by relating them to the standard entries.

Choosing the spherical harmonics for the input basis is convenient because it allows us to

exploit the angular bandlimit of the imaging system and work in an orthonormal basis.
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Calculating the entries in this basis yields

H`m(rd, r⊥o , ro) ≡
(
ê(rd),Hê(r⊥o )ê(ro)Ê`m

)
=
∫
S2
dŝo h(rd, r⊥o , ro , ŝo)Y`m(̂so)

=
∑

j,j′=0,1,2

[∫
S2
dŝo Y`m(̂so)sjsj′

]
Bjj′(rd − r⊥o , ro)

= 4π
3

∑
j,j′=0,1,2

G
mεjεj′
`11 Bjj′(rd − r⊥o , ro), (4.77)

where ε0 = 1, ε1 = −1, ε2 = 0, and

Gmm
′m′′

``′`′′ =
∫
S2
dŝY`m(̂s)Y`′m′ (̂s)Y`′′m′′ (̂s) (4.78)

are the real Gaunt coefficients [163, 164]. The Gaunt coefficients Gmm′m′′`11 are only nonzero

for ` = 0, 2, which means that H only transmits six angular components.

4.3 Results

To demonstrate our model we will specify a geometric phantom under three different limits

(fast angular diffusion, slow angular diffusion, and free dipoles), specify an imaging system,

then simulate the irradiance patterns generated by the phantom under these three limits.

4.3.1 Phantom

We begin by choosing the following family of angular potentials

v0(̂so; θ) = −V0(̂so · [ŷ sin θ + ẑ cos θ])2, (4.79)

where ŝo is the object-space angular variable, θ is the angle between the symmetry axis and

the ẑ axis in the ŷ-ẑ plane, and V0 is a positive constant. The corresponding Boltzmann
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distributions are

φ0(̂so; θ) = Z−1 exp[V0β(̂so · [ŷ sin θ + ẑ cos θ])2], (4.80)

which are Watson distributions with mean orientations [ŷ sin θ + ẑ cos θ] and concentration

parameter V0β [165]. For our simulations we fix the concentration parameter to V0β = 4.

This family of dipole distributions has its mean orientation in the ŷ-ẑ plane, but the dipoles

are not restricted to this plane. Next, we define a spatio-angular potential as

v(ro, ŝo) = v0(̂so; [π/4]ro · ŷ), (4.81)

which consists of distributions with mean orientations that change with ro · ŷ. We assume

that spatial diffusion is negligible, so we can write the spatio-angular equilibrium distribution

as

φ(ro, ŝo) = φ0(̂so; [π/4]ro · ŷ), (4.82)

and we can choose a time-independent spatial density

ρ(ro) =
2∑
i=0

2∑
j=0

δ(ro − ix̂− jŷ− [j/4]ẑ). (4.83)

The geometric phantom consists of nine labeled points in a three-dimensional grid measured

in µm. The three rows of points are increasingly defocused (0, 0.25, and 0.5 µm of defocus),

and the three columns of points have mean orientations that are increasingly tilted away

from the ẑ axis towards the ŷ axis (0, π/4, and π/2 radians between the mean orientation

and the ẑ axis). Finally, we illuminate the sample with coherent light linearly polarized
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along the p̂ axis with standard entries

(
ê(̂s),K(ex)

p̂ ê(̂s′)
)

=
(
p̂ · ŝ′

)2
δ(̂s− ŝ′). (4.84)

Now that we have specified the geometry of our phantom, we will calculate the emission

densities under three limits (fast angular diffusion, slow angular diffusion, and free dipoles).

Plugging Eqs. (4.83) and (4.84) into Eqs. (4.54) and (4.62) yields the following emission

density for weak excitation of dipoles undergoing fast angular diffusion

f
p̂
(fast)(ro, ŝo) = ρ(ro)

[∫
S2
dŝ (p̂ · ŝ)2φ(ro, ŝ)

]
φ(ro, ŝo). (4.85)

Using Eq. (4.55) instead of Eq. (4.54) yields the following emission density for weak excitation

of dipoles undergoing slow angular diffusion

f
p̂
(slow)(ro, ŝo) = ρ(ro)

[
(p̂ · ŝo)2φ(ro, ŝo)

]
. (4.86)

For our final phantom we consider free dipoles (no angular potential) with a spatially

varying ratio 6D/κ(d). We modify Eq. (4.57) to create the emission density

f
p̂
(free)(ro, ŝo) = ρ(ro)

[
1 + 3(̂so · p̂)2 − 1

1 + 10(ro·ŷ)−1

]
, (4.87)

where the factor 10(ro·ŷ)−1 models a position-dependent rotational mobility in the phantom.

4.3.2 Imaging system

To simulate our imaging system, we start with a phantom f(ro, ŝo), change to a basis of

spherical harmonics using

F`m(ro) =
∫
S2
dŝof(ro, ŝo)Y`m(̂so), (4.88)
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then simulate the data using

g(rd) =
∞∑
`=0

∑̀
m=−`

∫
R2
droH`m(rd, ro)F`m(ro), (4.89)

where the matrix elements H`m(rd, ro) can be calculated with Eq. (4.77). Note that

H`m(rd, ro) = 0 for ` > 2, so we only need to calculate F`m(ro) for ` ≤ 2—six total

entries.

We choose NA = 1.4, λ = 500 nm, and n0 = 1.5. We sample and plot the scaled

irradiance at 20× the Nyquist rate, ∆x = 1/[20(2νc)], so the irradiance patterns are free of

aliasing.

4.3.3 Simulated irradiance patterns

Figure 4.3 shows f p̂
(fast)(ro, ŝo) under two illumination polarizations (p̂ = x̂+ŷ and p̂ = x̂−ẑ),

their images, and profiles through each image. Fast-diffusing dipoles reach their Boltzmann

distribution before decaying, so the emission densities in Fig. 4.3 are Watson-distributed and

rotationally symmetric about a mean axis. The emission densities are weighted by constant

excitation efficiencies (see Eqs. (4.54) and (4.85)), so each Watson distribution is scaled by

a constant factor. Distributions that have more dipoles aligned parallel to the polarization

direction are excited most efficiently, and the emission densities in Fig. 4.3 are scaled to

represent this fact.

As expected, in-focus distributions (the bottom row of distributions in Figs. 4.3(a) and

4.3(b)) generate the brightest and most rotationally symmetric irradiance patterns, while de-

focused distributions spread the irradiance over a larger area on the detector and oblique de-

focused distributions display asymmetric irradiance patterns (the top row and center column

is asymmetric in the ŷ direction). Notably, fast-diffusing dipoles under different polarized

illuminations create irradiance patterns with different scales and the same shape.
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ŷ

3 µm

x̂

ŷẑ
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Figure 4.3: Left: A spatio-angular phantom undergoing fast angular diffusion—see Eq.
(4.85)—under illumination by (a) [x̂ + ŷ] polarized light and (b) [x̂ − ẑ] polarized light.
The phantom consists of nine point sources with varying defocus (rows) and mean orien-
tation (columns). The radius and color of each glyph encode the value of the emission
density f p̂

(fast)(ro, ŝo). Center: Irradiance patterns for an imaging system with NA = 1.4,
λ = 500 nm, and n0 = 1.5 sampled at 20× the Nyquist rate. Each row is individually nor-
malized as indicated by the color bars. Right: Horizontal (red) and vertical (green) profiles
through the irradiance pattern.

Figure 4.4 shows the same results as Fig. 4.3 but in the slow diffusion limit f p̂
(slow)(ro, ŝo).

Slow-diffusing dipoles do not rotate before emission, so the emission density is the point-

wise product of the excitation efficiency function and the Boltzmann distribution (see Eqs.

(4.55) and (4.86)). Importantly, this means that the emission densities are not rotationally

symmetric (the point-wise product of two rotationally symmetric functions is not always

rotationally symmetric). This asymmetry is especially apparent for Watson distributions

with mean directions that are perpendicular to the polarization direction (the left column in
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Fig. 4.4(a) and the right column in Fig. 4.4(b)). In addition to rotational asymmetry, slow-

diffusing dipole emission density maxima are tilted towards the excitation polarized direction

(see the right column in Fig. 4.4(a) and the left column in Fig. 4.4(b)), which is due to the

point-wise product of the excitation efficiency function and the Boltzmann distribution.
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ŷẑ

(b) p̂ = x̂− ẑ
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Figure 4.4: Left: A spatio-angular phantom undergoing slow angular diffusion—see Eq.
(4.86)—under illumination by (a) [x̂+ ŷ] polarized light and (b) [x̂− ẑ] polarized light. The
phantom consists of nine point sources with varying defocus (rows) and mean orientation
(columns). The radius and color of each glyph encode the value of the emission density
f

p̂
(slow)(ro, ŝo), and the left column (a) or right column (b) of glyphs are magnified by 3× for
visualization purposes. Center: Irradiance patterns for an imaging system with NA = 1.4,
λ = 500 nm, and n0 = 1.5 sampled at 20× the Nyquist rate. Each row is individually
normalized as indicated by the color bars. Right: Horizontal (red) and vertical (green)
profiles through the irradiance pattern.

The slow-diffusing dipoles in Fig. 4.4 display more asymmetric irradiance patterns than

the fast-diffusing dipoles in Fig. 4.3. Perhaps surprisingly, defocused slow-diffusing dipoles
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display irradiance asymmetry along both the x̂ and ŷ directions (see the top row and center

column of Figs. 4.4(a) and 4.4(b)) despite the fact that the Watson distribution means are

in the ŷ–ẑ plane. This effect is a direct consequence of the excitation polarization—the

emission density maxima are tilted towards the polarization axis, which gives the emission

density maxima x̂, ŷ, and ẑ components.

Figure 4.5 shows the results for the phantom of freely diffusing dipoles f p̂
(free)(ro, ŝo). For

slow-diffusing free dipoles (left column), the emission density is identical to the excitation

efficiency function, while for fast-diffusing free dipoles (right column), the emission density

is nearly uniform. The irradiance patterns are similar for slow- and fast-diffusing free dipoles

under different polarizations, but [x̂ − ẑ]-polarized illumination of slow-diffusing defocused

dipoles create asymmetric irradiance patterns (top row, left column of Fig. 4.5(b)).

4.4 Discussion and conclusions

4.4.1 When are diffusion decays multi-exponential, and when does it

matter?

Existing works use monoexponential decays to model angular diffusion [76, 78, 82]—they as-

sume that angular diffusion within a potential can be characterized by a single rotational

relaxation time. We have shown that this assumption is only justified when the initial con-

dition is a linear combination of eigenfunctions of the Smoluchowski operator that share a

single non-zero eigenvalue. The monoexponential assumption is true for weak linearly polar-

ized excitation of molecules in solution—the initial conditions and the eigenfunctions of the

Smoluchowski operator are linear combinations of the ` = 0 and ` = 2 spherical harmon-

ics that share a single non-zero eigenvalue. Perturbing the angular potential will change the

eigenfunctions of the Smoluchowski operator and lead to multi-exponential decays.

In the limits of weak excitation and fast diffusion (λv,i � κ(d) for all i > 0) or slow dif-
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Figure 4.5: Left: A spatio-angular phantom consisting of free dipoles —see Eq. (4.87)—
under illumination by (a) [x̂ + ŷ] polarized light and (b) [x̂ − ẑ] polarized light. The
phantom consists of nine point sources with varying defocus (rows) and ratio of the diffusion
coefficient to the decay rate D/κ(d) (columns). The radius and color of each glyph encode
the value of the emission density f p̂

(free)(ro, ŝo). Center: Irradiance patterns for an imaging
system with NA = 1.4, λ = 500 nm, and n0 = 1.5 sampled at 20× the Nyquist rate. Each
row is individually normalized as indicated by the color bars. Right: Horizontal (red) and
vertical (green) profiles through the irradiance pattern.

fusion (λv,i � κ(d)), our results agree with the literature that makes the monoexponential

assumption [76, 78, 82]. Weakly excited fast-diffusing dipoles reach their Boltzmann distri-

bution before emission, so the emission density is the Boltzmann distribution multiplied by

a constant excitation efficiency factor. Meanwhile, weakly excited slow-diffusing dipoles do

not rotate before emission, so the emission density is the pointwise product of the excitation

efficiency function and the Boltzmann distribution.

Our predictions diverge from the monoexponential literature [76, 78, 82] in the interme-
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diate regime (λv,i ≈ κ(d) for any i > 0), and the differences can be dramatic. To choose an

adversarial example, consider an angular potential with two wells separated by a large but

finite potential barrier. If molecules within one well are excited then they can diffuse quickly

within that well, but they will take a long time to diffuse to the other well. Clearly, multiple

diffusion times are needed to characterize the imaging process.

Multiple diffusion times are needed to characterize simpler angular potentials, too. Con-

sider the widely used “wobble-in-a-cone” model with a single molecule that is initially ori-

ented at the edge of the cone. In sections 4.2.2–4.2.3 we used differential equations and

group theory to argue that the angular decay will be multi-exponential, but we can under-

stand the argument qualitatively by approximating the diffusion as a discrete random walk

of a single molecule. Initially, the dipole can move in three directions each with probability

≈1/3—clockwise, counterclockwise, and towards the center of the cone. Later, the molecule

will be away from the edge of the cone, and the molecule can move in four directions with

probability ≈1/4. Therefore, molecules at the edge will move away from their initial con-

dition faster on average than molecules away from the edge, so a single diffusion time is

insufficient to characterize diffusion with a cone.

4.4.2 Is angular structured illumination different from polarized

illumination?

We have used the term “angular structured illumination” instead of “polarized illumination”

throughout this chapter for two reasons. First, unpolarized light can have angular structure—

an unpolarized plane wave does not excite dipoles parallel to its propagation direction.

Although we have focused on using polarized light to alias high angular frequency information

into the passband, unpolarized light can be used to the same effect (albeit with less efficient

aliasing than polarized light). Second, “angular structured illumination” highlights the deep

similarity with spatial structured illumination. Readers familiar with spatial structured
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illumination can apply their intuition to angular structured illumination techniques, and

many existing spatial techniques have direct angular analogs.

4.4.3 How many angular components can we image?

The spatio-angular imaging operator H only transmits six angular components, so H can

be decomposed into two operators: H = H′P , where P : L2(R3 × S2) → [L2(R3)]6 is a

projection operator onto the direct sum of six L2(R3) spaces, and H′ : [L2(R3)]6 → L2(R2).

The fact that only six angular components are transmitted is a direct consequence of the

angular band limit imposed by dipole radiation.

However, angular structured illumination allows us to alias a much larger number of

angular components into the passband of the imaging system. For strong excitation of dipoles

undergoing slow angular diffusion, a theoretically unlimited number of angular components

can be aliased into the passband—see Eq. (4.47) and Fig. 4.1. Of course, the number

of angular components is practically limited by diffusion, photobleaching, and noise—see

Gustafsson [161] for an analogous discussion of how these factors affect spatial non-linear

structured illumination. More practically, weak excitation of dipoles undergoing slow angular

diffusion allows us to alias a total of fifteen angular components into the passband of the

imaging system (corresponding to the ` = 0, 2, 4 spherical harmonics). For fast-diffusing

dipoles, aliasing does not occur and only six angular components (corresponding to the

` = 0, 2 spherical harmonics) can be imaged.

Many other non-linear techniques can be used to alias high-frequency angular components

into the passband. Two-photon excitation beams excite with a cos4 θ dependence, so a two-

photon beam can alias higher angular frequencies than an equivalent single-photon beam [56].

A wide variety of other techniques that exploit three- or multi-state fluorescent molecules to

alias high spatial frequencies can be adapted to alias high angular frequencies—see the sup-

plement of [166] for a summary of non-linear spatial structured illumination techniques. For
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a particular example, Hafi et al. adapted stimulated emission depletion microscopy (STED)

to the angular case in a technique they called excitation polarization angle narrowing (Ex-

PAN) [167]. Although they claimed their technique provided improved spatial resolution,

this claim has been challenged [168] and we view ExPAN as a technique that provides im-

proved angular resolution that can be used to infer higher spatial resolution if the coupling

between spatial and angular information is known.

We have focused on cases where the exposure time is much longer than the diffusion and

decay times—so-called steady-state experiments—but exposure times comparable to diffusion

and decay times—so-called time-resolved experiments—are possible [60, 169, 170]. We can

model these experiments within our framework by changing the limits of integration in

Eqs. (4.42) or (4.61). Time-resolved experiments allow for the measurement of more angular

components than steady-state experiments, and we view these techniques as important future

directions.

4.4.4 How many angular components can we reconstruct?

Imaging an angular component is only the first step towards estimating an angular compo-

nent. To estimate a parameter it must be a linear combination of eigenfunctions of H†H

with non-zero eigenvalues (equivalently, a linear combination of the right singular vectors of

H with non-zero singular values) [1, ch. 13.3]. We will explore these functions—the so-called

measurement space of H—in the next chapter.

For now we briefly mention two strategies for reconstructing multiple angular compo-

nents. The first approach is to take N sequential measurements of the same object af-

ter changing the illumination or detection polarization, then use these measurements to

reconstruct the angular components at each spatial position independently [37, 39, 48,

51, 55, 59, 115]. This approach amounts to approximating the complete imaging pro-

cess Hmulti : L2(R3 × S2) → [L2(R2)]N with an imaging operator for each spatial point
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Hpoint : L2(S2) → RN . Although this approach simplifies the reconstruction problem, it

ignores valuable information that can be exploited. We advocate for joint spatio-angular

reconstructions that use everything we know about the physics of the imaging process.

The second approach is to image single molecules and use their images to estimate angular

components [68, 80, 82, 85]. In this case the imaging process can be modeled with a single

imaging operator for each molecule Hsingle : L2(S2) → L2(R2). This chapter’s potential

contributions to single-molecule imaging are improved imaging operators Hsingle that can

be used to access more parameters (multiple diffusion constants or high angular frequency

components).

4.4.5 Stochastic spatio-angular imaging

A major limitation of this chapter is that we have only modeled the ensemble average behav-

ior of dipole diffusion, emission, and imaging, when these processes are actually stochastic

processes. More specifically, angular diffusion is a random walk on the sphere, emission is

an exponential process, and photon imaging is a Poisson process. Existing works have mod-

eled these stochastic processes and then extracted the ensemble averages [76, 78, 82], while

here we have modeled the ensemble averages directly.

In this chapter we have focused on describing ensemble average features that have ei-

ther been previously assumed absent (like the multi-exponential nature of diffusion) or not

previously described (like non-linear angular structured illumination). Ultimately, optimal

reconstructions will require complete stochastic descriptions of the imaging process so that

correlations in the data can be exploited, and we consider stochastic descriptions of dipole

imaging important future work.
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CHAPTER 5

INVERSE PROBLEMS, SINGULAR-VALUE

DECOMPOSITIONS, AND RECONSTRUCTION

ALGORITHMS

Without any underlying symmetry properties,
the job of proving interesting results becomes extremely unpleasant.

The enjoyment of one’s tools is an essential ingredient of successful work.
— Donald E. Knuth The Art of Computer Programming Vol. II (1969)

In chapters 2–4 we developed spatio-angular forward models for each step of the mea-

surement process—polarized excitation, angular diffusion, and imaging. We used these

models to develop an intuition for these imaging systems and to simulate the data generated

by numerical phantoms. Although these models are valuable in their own right, their com-

plete value emerges when they are combined with practical reconstruction algorithms that

can estimate spatio-objects from measured data.

In this chapter we will pose several inverse problems and propose reconstruction algo-

rithms for their solution. In chapter 4 we saw that the relationship between object parameters

and the measured data can be extremely nonlinear—a scaled sum of inputs does not always

result in a scaled sum of outputs. Solving nonlinear inverse problems can be extremely chal-

lenging and the algorithm developer can rarely make guarantees about the properties of the

solutions. Oftentimes the most practical approach is to measure or simulate object-data

pairs and use these pairs to train a nonlinear inverse model like a neural network [171]. Al-

though these approaches are valid, we would prefer to avoid choosing which object-data pairs

to measure or simulate, and we would like to guarantee as many properties about our recon-

structions as we can. Fortunately, under weak restrictions on the object and measurements

we can pose linear reconstruction problems that can be analyzed and solved efficiently using

the singular value decomposition (SVD) [1, ch. 1].
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The SVD provides deep insights into the behavior of a linear imaging system. If we

have an infinite-dimensional Hilbert-space vector f ∈ U that represents the object we would

like to estimate, a J-dimensional vector of measurements g ∈ RJ , and an imaging operator

H : U → V = RJ that acts linearly, i.e. if g = Hf then α1g1 + α2g2 = H[α1f1 + α2f2] for

scalar-valued α1 and α2, then we can rewrite H in terms of its SVD

g = Hf =
R∑
i=1

√
µivi (ui, f), (5.1)

where R is the rank ofH, (·, ·) denotes the inner product on U, and {ui,vi, µi} is the singular

system of H that satisfies the eigenvalue equations

H†Hui = µiui, (5.2)

HH†vi = µivi. (5.3)

An arbitrary object f can always be decomposed into the sum of two parts f = fmeas + fnull

where (ui, fmeas) 6= 0 and (ui, fnull) = 0. With Eq. (5.1) in view, it is clear that fnull will not

contribute to the measured data, so fnull will be impossible to reconstruct without using prior

information about the object. Meanwhile, fmeas does contribute to the data, and we can

attempt to recover this component from the data. Equivalently, we can say that object space

U can be orthogonally decomposed into the direct sum of two subspaces U = Umeas⊕Unull.

The object-space singular functions ui associated with non-zero eigenvalues µi 6= 0 span

the measurement space Umeas, while the object-space singular functions associated with zero

eigenvalues µi = 0 span the null space Unull.

The eigenvalues µi can provide further insights into the imaging process. The magnitude

of an eigenvalue tells us how efficiently the imaging system can transmit its associated

singular function ui to the data. Singular functions associated with the smallest eigenvalues

are most easily corrupted by noise, so they are the most challenging components of the object
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to recover. Second, degenerate eigenvalues indicate symmetries of the imaging system, and

these symmetries can be exploited to reduce the number of eigenvalues and singular functions

that need to be calculated and stored. Throughout this chapter we will formulate all of our

algorithms in terms of µi, the eigenvalues of H†H, but we could equally formulate in terms

of σi = √µi, the singular values of H.

The SVD also leads to a simple and efficient class of reconstruction algorithms. A rea-

sonable starting place for estimating an object f from data g is to solve the least-squares

optimization problem

f̂LS = argmin
f
||g−Hf ||2. (5.4)

This optimization problem has a closed-form solution that is easily expressed in terms of the

singular system of H

f̂LS =
R∑
i=1

1
√
µi

ui (vi,g) . (5.5)

This solution can be statistically justified as the maximum-likelihood estimator for data

corrupted by uncorrelated Gaussian noise [1, ch. 13.3.4]. The solution in Eq. (5.5) carries

a well-known problem—division by small eigenvalues µi can amplify noise to unacceptable

levels. One approach to fixing this problem is to add a Tikhonov regularization term to the

optimization problem

f̂η = argmin
f
||g−Hf ||2 + η||f ||2, (5.6)

where η is a positive constant. Once again, this optimization problem has a closed-form
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solution in terms of the singular system of H

f̂η =
R∑
i=1

√
µi

µi + η
ui (vi,g) . (5.7)

Statistically, adding a Tikhonov regularizer can be interpreted as applying a Bayesian prior

that assumes the unknown parameters to be independent, zero-mean, Gaussian-distributed

random variables with variance 1/(2η) [1, ch. 15.3.3]. Although this might be an unlikely

assumption, adding a Tikhonov regularizer is a widely used and practical way to control

noise amplification in linear reconstructions.

None of the mathematical techniques in this chapter are new—least-squares solutions

were first used by Gauss in the 1790s (though Legendre published first in 1805) [172, 173],

the theory of singular value decompositions of compact linear operators was developed by

Schmidt in 1907 [174, 175], and Tikhonov regularizers were first applied in 1963 [176]. More

recently, Barrett and colleagues at the University of Arizona have calculated singular value

decompositions for a wide range of imaging systems [1, 177–183], and these techniques have

started to gain wider use [184, 185]. Although we are applying well-established mathematical

techniques, to our knowledge this is the first work to consider singular value decompositions

when the object space is U = L2(R2×S2). This space is mathematically interesting because

it consists of functions on the product space of a non-compact manifold R2 and a compact

manifold S2, which leads to a discrete set of continuous singular value spectra.

This chapter also contributes to the literature that considers the fundamental limits

of polarized fluorescence microscopy [84, 117, 186, 187], and this work is the first to use

singular-value decompositions to analyze which parameters of a fluorescent object can be

reconstructed from measurements. Several works have used singular value decompositions

to optimize measurements for reconstructing the polarization state of light [188–190], but

here we focus on recovering parameters of fluorescent objects instead of the polarization state

of light.
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This chapter is organized as follows. We begin by posing a general nonlinear inverse

problem, and we find the conditions under which the inverse problem is approximately linear.

Next, we calculate singular value decompositions of three illustrative spatio-angular imaging

systems. First, we consider angularly uniform excitation (for example, with unpolarized

light and a high-NA condenser) of a thin sample under a high-NA detection arm. Second, we

analyze a simple hypothetical instrument that uses polarized excitation to excite fluorophores

in a cuvette with a surrounding hemispherical detector. We use this simple case to build our

intuition and to calculate optimal polarization sampling schemes. Third, we consider the

general case of a microscope that uses both polarized illumination and high-NA detection.

We have chosen these three instruments to develop intuition about the illumination side

alone, the detection side alone, and their combination. Finally, we describe a Tikhonov-

regularized pseudoinverse reconstruction algorithm with an efficient implementation, and we

conclude with a discussion.

5.1 Inverse problems

We start by posing a reasonably general class of spatio-angular inverse problems. First,

consider an ensemble of two-state fluorescent molecules with aligned dipole absorption and

emission moments. These molecules undergo spatial and angular diffusion while being excited

with illumination light and decaying to emit photons that we can manipulate and detect.

We have the freedom to make multiple measurements of the object by manipulating the

excitation light or by manipulating the emitted photons and detector bins, but we can

not control the position, diffusion, or decay dynamics of the molecules. Our goal is to

choose measurements that can be used to recover as much as possible about the position,

orientation, and dynamics of these fluorescent molecules. Ideally enough information can be

recovered that the experimentalist can draw new conclusions about the molecules and their

environment.
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Mathematically, we can describe this ensemble using two functions f (gr)(ro, ŝo, t) and

f (ex)(ro, ŝo, t) (or their associated Hilbert-space vectors f (gr)(t) and f (ex)(t)) that describe

the number of molecules per unit volume at position ro per unit solid angle oriented along ŝo

per unit time at time t in the ground and excited states, respectively. We assume that these

molecules are diffusing in a general potential v(ro, ŝo), that they are decaying with a general

rate constant κ(d)(ro, ŝo), and that during the jth measurement they are being excited with

a general rate constant κ(ex)j (ro, ŝo). These dynamics can be captured by the following pair

of coupled differential equations

∂

∂t

f (ex)(t)

f (gr)(t)

 =

Dv −K(d) K
(ex)
j

K(d) Dv −K
(ex)
j


f (ex)(t)

f (gr)(t)

 , (5.8)

where Dv is a Smoluchowski operator that models spatio-angular diffusion with entries

(
ê(ro, ŝo),Dvê(r′o, ŝ′o)

)
= ∇ · exp[−βv(ro, ŝo)]D exp[βv(r′o, ŝ′o)], (5.9)

where ∇ is a gradient on R3 × S2, D is a generalized diffusion tensor, and β = 1/kBT ;

K(d) models decay with entries

(
ê(ro, ŝo),K(d)ê(r′o, ŝ′o)

)
= κ(d)(ro, ŝo)δ(ro − r′o)δ(̂so − ŝ′o); (5.10)

and K
(ex)
j models the illumination pattern for the jth measurement with entries

(
ê(ro, ŝo),K

(ex)
j ê(r′o, ŝ′o)

)
= κ

(ex)
j (ro, ŝo)δ(ro − r′o)δ(̂so − ŝ′o). (5.11)

If the molecules start in the ground state with spatial density ρ(ro), then the initial condition

is given by f (ex)(ro, ŝo, 0) = 0 and f (gr)(ro, ŝo, 0) = ρ(ro). After solving Eq. (5.8) we can

model the emission density during the jth measurement measured from time t0,j to time t1,j
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as

fj(ro, ŝo) =
∫ t1,j
t0,j

dt κ(d)(ro, ŝo)f (ex)(ro, ŝo, t). (5.12)

Finally, we can model the irradiance measured in the jth measurement by integrating the

emission density fj(ro, ŝo) multiplied by the point-response function h(det)j (ro, ŝo)

gj =
∫
R3
dro

∫
S2
dŝo h

(det)
j (ro, ŝo)fj(ro, ŝo). (5.13)

We note that the experimentalist has freedom to choose excitation rate constants κ(ex)j (ro, ŝo),

detector responses h(det)j (ro, ŝo), and measurement times t0,j and t1,j . We also note that j

can index many kinds of measurements—pixels on a detector, views of a multiview micro-

scope, defocus settings, light-sheet scan positions, polarizer settings, etc.—so this framework

is general enough to model a broad class of fluorescence microscopes.

Now that we have paid the notational overhead, we can propose a candidate for a general

fluorescence microscopy inverse problem: given measurements gj , a measurement scheme{
κ
(ex)
j (ro, ŝo), h

(det)
j (ro, ŝo), t0,j , t1,j

}
, and the forward model in Eqs. (5.8)–(5.13), recover

as much as possible about the labeling density ρ(ro), the potential v(ro, ŝo), and the decay

rates κ(d)(ro, ŝo). This is an extremely nonlinear inverse problem that will be very challenging

to solve.

One way to linearize the inverse problem is to lower our expectations for what we can

hope to reconstruct. For example, Eq. (5.13) shows that there is a linear relationship between

the data gj and the emission density fj(ro, ŝo). If we choose a fixed illumination pattern,

then the emission density fj(ro, ŝo) no longer depends on the illumination (mathematically,

it loses its j dependence) and we can use linear reconstructions to recover it from the data.

However, the emission density is not a particularly interesting object to reconstruct since

it changes with the illumination pattern. We would prefer to recover illumination-invariant
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properties of the sample if possible.

One way to find an illumination-invariant property of the sample is to linearize the

problem by making assumptions (or by arranging experimental conditions that satisfy as-

sumptions) about our object and measurements. In chapter 4 we showed that if (a) spatial

diffusion is negligible, (b) angular diffusion is consistent with a spherical rotor model (c) ex-

citation is weak to avoid saturation effects, (d) angular diffusion times are long compared

to the fluorescence decay times, (e) exposure times are long compared to the diffusion and

fluorescence decay times, (f) and the measurements are collected long after initial transient

diffusion and fluorescence decay times (fluorescence dynamics have reached a steady state),

then the following relationship holds

gj =
∫
R3
dro

∫
S2
dŝo h

(det)
j (ro, ŝo)h

(exc)
j (ro, ŝo)f̄(ro, ŝo), (5.14)

where the excitation point response function is just a renamed version of the excitation rate

constant

h
(exc)
j (ro, ŝo) = κ

(exc)
j (ro, ŝo), (5.15)

and

f̄(ro, ŝo) = ρ(ro)
exp[−βv(ro, ŝo)]∫

S2 dŝ exp[−βv(ro, ŝo)]
(5.16)

is the spatio-angular Boltzmann density—the product of the labeling density ρ(ro) and the

angular Boltzmann distribution at each spatial point. Notice that we distinguish the spatio-

angular emission density f from the spatio-angular Boltzmann density f̄ with an overbar.

The relationship between f̄(ro, ŝo) and the data is linear, so the spatio-angular Boltzmann

density is a reasonable candidate for us to try and reconstruct using the singular value

decomposition. Therefore, Eq. (5.16) relates the sample properties ρ(ro) and v(ro, ŝo) to our
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reconstruction target f̄(ro, ŝo). We emphasize that the spatio-angular Boltzmann density

is only a reasonable target for reconstruction when conditions (a)–(f) are satisfied. If these

conditions are not satisfied then we can either solve the modest problem of reconstructing

the emission density f(ro, ŝo) or tackle the more general nonlinear problem. From this point

forward we will assume that conditions (a)–(f) are satisfied unless we note otherwise.

5.2 SVD of uniform excitation with epi-detection

For our first SVD we make several simplifications to the general model in Eq. (5.14). First,

we assume that the object is restricted to a single plane and let ro → r⊥o . Second, we assume

that our measurements are made everywhere on a continuous two-dimensional plane and let

j → rd ∈ R2. This is an approximate model for a two-dimensional detector with small pixels.

Third, we assume that the illumination pattern is constant h(ex)(r⊥o , ŝo) = 1, a condition that

can be achieved by illuminating with unpolarized light, a high-NA condenser, and Köhler

illumination. Finally, we assume that the imaging system is laterally shift-invariant. Under

these conditions, the forward model takes the form

g(rd) =
∫
R2
dr⊥o

∫
S2
dŝo h(det)(rd − r⊥o , ŝo)f̄(r⊥o , ŝo). (5.17)

We briefly note that this equation can be interpreted in two ways. The first interpretation is

the one we just presented—angularly uniform excitation makes h(ex)(r⊥o , ŝo) = 1 and we are

attempting to estimate f̄(r⊥o , ŝo). Alternatively, Eq. (5.17) takes a form similar to Eq. (5.13),

which maps the emission density to the data. This leads to an interpretation where we are

trying to recover the emission density f(ro, ŝo) from the data independent of the illumination

pattern. By analyzing the kernel h(det)(rd− r⊥o , ŝo), we can draw conclusions about both of

these cases.
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It will be convenient to define an associated linear Hilbert space operator H(det) with

entries

(
ê(rd),H(det)ê(r⊥o )ê(̂so)

)
= h(det)(rd − r⊥o , ŝo). (5.18)

If an aplanatic 4f optical system with a paraxial tube lens and unit magnification (or de-

magnified coordinates) images a plane at a constant defocus position ro , the operator entries

are given by [73, 76, 78, 80]

h(det)(rd − r⊥o , ŝo) =
∑

j,j′=0,1,2
Bjj′(rd − r⊥o , ro)sjsj′ , (5.19)

where

Bjj′(r⊥, ro) =
∑
i=0,1

βij(r⊥, ro)β∗ij′(r
⊥, ro) (5.20)

is the irradiance created at position r⊥ on the detector when an sjsj′ angular distribution

is placed at defocus position ro ,

βij(r⊥, ro) =
∫
R2
dτ A(τ )Φ(τ , ro)gij(τ ) exp[i2πτ · r⊥] (5.21)

is the ith component of the electric field created at position r⊥ on the detector by the jth

component of a dipole,

A(τ ) = (1− |τ |2)−1/4Π (|τ |/νc) (5.22)

is the aplanatic apodization function with full width νc = 2NA/λ,

Φ(τ , ro) = exp
[
i2πro

√
ν2
m − |τ |2

]
(5.23)
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encodes the defocus phase with νm = n0/λ, the functions gij(τ ) model the ith field compo-

nents in the pupil plane created by the jth component of a dipole

g00(τ ) = sin2 φτ + cos2 φτ
√

1− |τ |2, g10(τ ) = 1
2 sin(2φτ )

(√
1− |τ |2 − 1

)
,

g01(τ ) = 1
2 sin(2φτ )

(√
1− |τ |2 − 1

)
, g11(τ ) = cos2 φτ + sin2 φτ

√
1− |τ |2,

g02(τ ) = |τ | cosφτ , g12(τ ) = |τ | sinφτ , (5.24)

and sj is the jth component of the dipole orientation coordinate ŝo.

Expressing these entries in an object-space basis of spherical harmonics yields

(
ê(rd),H(det)ê(r⊥o )Ê`m

)
= H

(det)
`m (rd − r⊥o ) = 4π

3
∑

j,j′=0,1,2
G
mεjεj′
`11 Bjj′(rd − r⊥o , ro), (5.25)

where ε0 = 1, ε1 = −1, ε2 = 0, and

Gmm
′m′′

``′`′′ =
∫
S2
dŝY`m(̂s)Y`′m′ (̂s)Y`′′m′′ (̂s), (5.26)

are the real Gaunt coefficients [163].

Expressing these entries in terms of object- and data-space complex exponentials and

exploiting the shift-invariance of the imaging system yields

(
Ê(νd),H(det)Ê(νo)Ê`m

)
= H(det)

`m (νo)δ(νd − νo), (5.27)

where

H(det)
`m (ν) =

∫
R2
drH(det)

`m (r) exp [−2πir · ν] (5.28)

is the spatio-angular transfer function which we calculate and plot in Fig. 5.1 for two defocus
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Figure 5.1: The spatio-angular transfer function H(det)
`m (ν) for two defocus positions (rows)

with NA = 1.4, n0 = 1.5, and λ = 500 nm. Each column uses its own color scale (bottom
color bars) and shows the transfer function for a different object-space spherical harmonic
coefficient (`,m). Notice that real values are shown in a red-blue color scale while imaginary
values are shown in a pink-green color scale. The position within each axis is the continuous
spatial frequency ν. The transfer function is zero when |ν| ≥ νc = 2NA/λ, or when ` 6= 0, 2,
or when |m| > `.

positions. This basis choice gives a compact description of the detection process—H(det)
`m (ν)

is only non-zero within six disks in the spatial-frequency domain, while H(det)
`m (r) is only

non-zero on six 2D planes in the spatial domain, and h(det)(r, ŝo) is non-zero on an infinite

number of planes (one plane for each point on sphere).

To interpret the spatio-angular transfer function H(det)
`m (ν) it is essential to have a clear

understanding of the object- and data-space bases. For specific (`,m,ν) the value of H(det)
`m (ν)

shows us how an object consisting of spherical harmonics Y`m(̂so) with spatial frequency

exp[2πir⊥o · ν] is modified by the imaging system as it is transmitted to the spatial fre-

quency exp[2πird · ν] on the detector. The magnitude (or complex modulus) of the transfer

function indicates the attenuation (or amplification) of the object space component when it

appears on the detector, while the phase (or complex argument) of the transfer function in-

dicates the spatial phase shift of the object-space complex exponential component when it
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appears on the detector. Equivalently, real positive values of the transfer function can be

interpreted as transmission without a spatial phase shift, real negative values can be inter-

preted as transmission with a π spatial phase shift (maxima in the object become minima

on the detector), and imaginary values can be interpreted as transmission with a π/2 spatial

phase shift (maxima in the object become zeros on the detector).

When the object is in focus, the zonal harmonics (spherical harmonics with m = 0)

are transmitted efficiently because the spatio-angular transfer function is large. Notably,

the sectoral harmonics (spherical harmonics with |m| = `) are transmitted but relatively

inefficiently (the transfer function is at most 3% of the maximum at H(det)
00 (0)). In chapter

3 we made paraxial approximations that neglected the sectoral harmonic components, but

here we can explicitly see their small contribution. Finally, the tesseral harmonics (spherical

harmonics with 0 < |m| < `) do not contribute to the image for in-focus objects, but

defocused tesseral harmonic components have a purely imaginary spatio-angular transfer

function. The imaginary transfer function for defocused tesseral objects leads to rotationally

asymmetric point response functions. Therefore, centroid-based reconstruction algorithms

that estimate the position of defocused tesseral objects will be biased. These biased estimates

can be avoided by filtering the light emitted by defocused tesseral components [191] or by

designing reconstruction schemes that use a complete model of the imaging process [80].

Before calculating the SVD of this operator, we point out a surprising property of the

spatio-angular transfer function that we will use later. If we write the spatial frequency

coordinates of the transfer function in polar coordinates ν → (ν, φν) then

∑
`m

|H(det)
`m (ν, φν)|2 =

∑
`m

|H(det)
`m (ν, φν + φ0)|2 (5.29)

for any φ0. In words, the absolute square of the transfer function summed over the spherical

harmonic components is rotationally symmetric. We will interpret this fact further after

finding the SVD, but for now we simply show that it is true. The property in Eq. (5.29)
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follows from the more strict property

|H(det)
`m (ν, φν)|2 + |H(det)

`(−m)(ν, φν)|2 = |H(det)
`m (ν, φν + φ0)|2 + |H(det)

`(−m)(ν, φν + φ0)|2, (5.30)

which is plausible at a glance of Fig. 5.1, but showing this fact requires several steps. First,

we realize that two-dimensional Fourier transforms preserve rotational invariance, so Eq.

(5.30) follows from

|H`m(r, φr)|2 + |H`(−m)(r, φr)|2 = |H`m(r, φr + φ0)|2 + |H`(−m)(r, φr + φ0)|2. (5.31)

Next, we examine the definition of H`m(r) in Eqs. (5.20)–(5.25) and realize that the only

components of H`m(r) that are not rotationally symmetric are the gij(τ ) functions. There-

fore, Eq. (5.31) is true if the following functions are rotationally symmetric

a`m(τ ) =

∣∣∣∣∣∣
∑

j,j′=0,1,2

∑
i=0,1

G
mεjεj′
`11 gij(τ )gij′(τ )

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

j,j′=0,1,2

∑
i=0,1

G
−mεjεj′
`11 gij(τ )gij′(τ )

∣∣∣∣∣∣
2
.

(5.32)

After straightforward but tedious calculations we find that

a00(τ ) ∝ 1, a20(τ ) ∝ (3|τ |2 − 2)2, a21(τ ) ∝ |τ |2(1− |τ |2), a22(τ ) ∝ |τ |4, (5.33)

which are rotationally symmetric functions, so our claim in Eq. (5.29) is confirmed.

Now we are ready to calculate the SVD of H(det) by solving the eigenvalue problem

[H(det)]†H(det)u(det)
ρ,k = µ

(det)
ρ,k u(det)

ρ,k , (5.34)

where ρ ∈ R2 is a continuous index and k is a discrete index. We know that the singular

functions will require both a continuous and a discrete index because the object space consists
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of functions on the product space of a non-compact space R2 (continuous index) and a

compact space S2 (discrete index).

First, we choose a basis for our object-space singular functions

(
ê(r⊥o )Ê`m,u

(det)
ρ,k

)
= U

(det)
ρ,k;`m(r⊥o ). (5.35)

Since the imaging system is laterally shift invariant, the lateral part of the singular functions

are complex exponentials [1], and the object-space singular functions take the form

U
(det)
ρ,k;`m(r⊥o ) = Ũ

(det)
k;`m (ρ) exp[2πiρ · r⊥o ]. (5.36)

Next, we write the adjoint of the forward operator in terms of the transfer functions we have

already calculated (see Eq. (5.25))

(
ê(r⊥o )Ê`m, [H(det)]†ê(rd)

)
= H

(det)∗
`m (rd − r⊥o ). (5.37)

With the adjoint entries in hand, we can calculate the entries of [H(det)]†H(det) and define

its associated kernel p(det)`m,`′m′(r
⊥
o − r⊥o

′) as

(
ê(r⊥o )Ê`m, [H(det)]†H(det)ê(r⊥o

′)Ê`′m′
)
≡ p

(det)
`m,`′m′(r

⊥
o − r⊥o

′) (5.38)

=
∫
R2
drdH

(det)∗
`m (rd − r⊥o )H(det)

`′m′ (rd − r⊥o
′).

Now we are in a position to solve the eigenvalue problem in the following basis

(
ê(r⊥o )Ê`m, [H(det)]†H(det)u(det)

ρ,k

)
= µ

(det)
ρ,k Ũ

(det)
k;`m (ρ) exp[2πiρ · r⊥o ]. (5.39)
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The crux is to rewrite the left hand side in terms of known transfer functions:

(
ê(r⊥o )Ê`m, [H(det)]†H(det)u(det)

ρ,k

)
=
∑
`′m′

∫
R2
dr⊥o
′
p
(det)
`m,`′m′(r

⊥
o −r⊥o

′)Ũ (det)
k;`′m′(r

⊥
o
′)exp[2πiρ · r⊥o

′]

= exp[2πiρ · r⊥o ]
∑
`′m′

P
(det)
`m,`′m′(ρ)Ũ (det)

k;`′m′(ρ) (5.40)

= exp[2πiρ · r⊥o ]H(det)∗
`m (ρ)

∑
`′m′

H(det)
`′m′ (ρ)Ũ (det)

k;`′m′(ρ),

where we have used the following calculation

P `
′m′
`m (ρ) =

∫
R2
dr p(det)`m,`′m′(r) exp[−2πρ · r] = H(det)∗

`m (ρ)H(det)
`′m′ (ρ). (5.41)

Equating the right-hand sides of Eqs. (5.39) and (5.41) yields

∑
`′m′

H`′m′(ρ)Ũ (det)
k;`′m′(ρ)

H(det)∗
`m (ρ) = µ

(det)
ρ,k Ũ

(det)
k;`m (ρ). (5.42)

For a given ρ the term in square brackets is a constant, so the left-hand side is a rank-one

operator and we can read off the eigenvalues and eigenfunctions directly from Eq. (5.42).

After normalizing, we find the eigenfunctions are

Ũ
(det)
k;`m (ρ) = δk0

H(det)∗
`m (ρ)√∑

`m |H
(det)
`m (ρ)|2

, (5.43)

and the eigenvalues are

µ
(det)
ρ,k = δk0

∑
`m

|H(det)
`m (ρ)|2. (5.44)
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The object-space singular functions in the standard basis are

(ê(r⊥o )ê(̂so),uρ,k) = u
(det)
ρ,k (r⊥o , ŝo) = δk0 exp[2πiρ · r⊥o ]

∑
`m H(det)∗

`m (ρ)Y`m(̂so)√∑
`m |H(det)(ρ)|2

, (5.45)

and the data-space singular functions are

(
ê(rd),v

(det)
ρ,k

)
= v

(det)
ρ,k (rd) = δk0 exp[2πiρ · rd]. (5.46)

To simplify our depiction of the object-space singular functions it will be useful to define the

following function that drops the spatial part of the singular function:

ũ
(det)
k (ρ, ŝo) = δk0

∑
`m H(det)∗

`m (ρ)Y`m(̂so)√∑
`m |H(det)(ρ)|2

. (5.47)

With the mathematical form of the SVD complete, we can move on to its interpretation.

The data-space singular functions are complex exponentials exp[2πiρ·rd] as we would expect

for any two-dimensional shift-invariant imaging system. More interestingly, the object-space

singular functions are the product of complex exponentials exp[2πiρ·r⊥o ] and a sum of spheri-

cal harmonics Y`m(̂so) weighted by the conjugate spatio-angular transfer function H(det)∗
`m (ρ).

The weights are different for each spatial frequency ρ, so the angular part of the singular

function changes for different spatial frequencies.

This result leads to perhaps the most wide-reaching conclusion of this dissertation—

fluorescence microscopes transmit angular components that vary with spatial frequency. A

typical way to interpret the data measured by an unmodified fluorescence microscope is to

consider the data as a spatially blurred (convolved) version of the true fluorophore distri-

bution. In reality, every fluorescence microscope (we know of no exceptions) images spatial

frequency-dependent angular distributions from the object, so the orientation of the flu-

orescent emitters plays a large role in the interpretation of the data. Although users of
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fluorescent microscopes often interpret deconvolved data as the orientation-independent flu-

orophore concentration, the fluorophore concentration is not in the measurement space so it

is not an estimable parameter. At best, unmodified fluorescence microscopes can estimate

the fluorophore concentration weighted by a nonuniform angular distribution. Estimates of

fluorophore concentration from spatially deconvolved data can be extremely biased, espe-

cially when the object contains high spatial frequency components.

The singular values of the imaging system can be calculated directly from the spatio-

angular transfer function using Eq. (5.44). Earlier, we established Eq. (5.29), which now

shows that the singular value spectrum is degenerate on any circle with fixed |ρ|—a fact that

has deep significance for this imaging system. This degeneracy of singular values indicates

rotational and mirror symmetry of the imaging system that we can exploit to reduce the

number of singular values and singular functions we need to compute, display, and store [1,

ch. 7.2.9]. More specifically, instead of calculating the singular system for each ρ in a plane

R2, we only need to calculate the singular system for each |ρ| on the positive real line R+

then exploit the symmetry to efficiently find the singular system at the remaining ρ.

It might seem like we are making two contradictory claims. We are claiming that the

imaging system is rotationally symmetric, while earlier we claimed that defocused tesseral

harmonic components give rise to rotationally asymmetric point response functions. These

claims are consistent, and to understand them we need to clarify our definition of rotational

symmetry. The degeneracy of singular values shows that the complete imaging system is

rotationally symmetric in the sense that functional rotation operators Tφ commute with

[H(det)]†H(det). Explicitly, this means that imaging, back projecting, then rotating the

object gives the same result as rotating, imaging, then back projecting. Meanwhile, the

point response functions are not rotationally symmetric since h(det)(r, φr, ŝo) depends on φr.

See Barrett and Myers for a discussion of this peculiarity [1, ch. 7.2.9].

Now that we understand the symmetry of the imaging system, we can plot the singular
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system for each |ρ| on the positive real line R+ without loss of generality—the singular

systems for general ρ can be found by symmetry. Figure 5.2 shows the complete singular

value spectrum and the object-space singular functions for five specific choices of ρ at two

defocus positions. The object-space singular functions associated with low spatial frequencies

are relatively uniform, but as the spatial frequency increases the associated singular functions

become less rotationally symmetric. The rotational asymmetry of the singular functions

means that the fluorophore concentration is not estimable—only the specific singular function

at each spatial frequency can be estimated. As the object is defocused, the singular spectrum

drops off faster with spatial frequency. This fact is familiar to all microscopists who observe

that defocusing the object results in a smoother image. Finally, we note that in-focus objects

have real-valued singular functions while defocused objects have complex-valued singular

functions. This follows directly from the transfer function H(det)
`m (ν), which is real-valued for

in-focus objects and complex-valued for defocused objects. Therefore, the complex-valued

singular functions are directly related to the rotationally asymmetric point response functions

of tesseral spherical harmonic components.

5.3 SVD of polarized excitation with uniform detection

Now, inscribe in the earth an icosahedron, the sphere inscribed in it will be Venus.
— Johannes Kepler Mysterium Cosmographicum (1596)

Similar to the previous section, we start by simplifying the general model in Eq. (5.14)

into a specific model that we can analyze. Here we restrict our sample to a small cuvette of

fluorophores with uniformly distributed orientations so that we can drop the spatial depen-

dence ro. We place a single hemispherical detector around the cuvette that collects exactly

half of the light emitted by the sample and model the situation by setting h(exc)j (ro, ŝo) = 1.

Finally, we illuminate the cuvette with a plane wave of linearly polarized light where we can

choose the polarization to be any point on the sphere p̂ ∈ S2. If we measure the irradiance
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Figure 5.2: The singular system of H(det) for two defocus positions (rows). The left column
shows the eigenvalues of [H(det)]†H(det) as a function of |ρ|, while the right columns show
the angular part of five object-space singular functions ũ(det)k (ρ, ŝo)—see Eq. (5.47). The
five choices of ρ are labeled at the top of each column and are marked with crosses in the
eigenvalue spectrum. The radius of each glyph along direction ŝo indicates the magnitude
|ũ(det)k (ρ, ŝo)| while the color indicates the phase arg[ũ(det)k (ρ, ŝo)].

on the detector for every incident polarization then we set j → p̂, and we can model the

complete instrument with

g(p̂) =
∫
S2
dŝo h(exc)(p̂, ŝo)f̄ (̂so), (5.48)

where

h(exc)(p̂, ŝo) = 3√
4π
|p̂ · ŝo|2 (5.49)

is the point response function, |p̂·ŝo|2 models the angular dependence of polarized excitation,

and 3/
√

4π is a normalization factor so that
∫
S2 dŝo h(exc)(p̂, ŝo)Y00(̂so) = 1. For this setup

we ask and answer two questions: (1) How much information about the object can we recover

if we make measurements using every polarization setting? (2) How many discrete samples

should we make and where should we place them?
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5.3.1 Transfer functions

We begin our analysis by defining an associated linear Hilbert space operator H(exc) with

entries

(ê(p̂),H(exc)ê(̂so)) = h(exc)(p̂, ŝo). (5.50)

Expressing these entries in terms of an object-space spherical harmonic basis yields

(ê(p̂),H(exc)Ê`m) = H
(exc)
`m (p̂) =

∫
S2
dŝo h(exc)(p̂, ŝo)Y`m(̂so). (5.51)

We normalized so that H(exc)
00 (p̂) = 1, but calculating H(exc)

2m (p̂) requires some manipulation

H
(exc)
2m (p̂) = 3√

4π

∫
S2
dŝo |p̂ · ŝo|2Y2m(̂so)

= 1√
4π

∫
S2
dŝo [1 + 2P2(p̂ · ŝo)]Y2m(̂so)

= 1√
4π

∫
S2
dŝo

1 + 8π
5

2∑
m′=−2

Y2m′(p̂)Y2m′ (̂so)
Y2m(̂so)

= 1√
4π

8π
5

2∑
m′=−2

Y2m′(p̂)δmm′

= 4
√
π

5 Y2m(p̂), (5.52)

where we have expanded in terms of Legendre polynomials, applied the spherical harmonic

addition theorem, exploited the orthonormality of the spherical harmonics, then used the

discrete sifting theorem. Bringing these results together yields the complete transfer function

H
(exc)
`m (p̂) =

√
4πY`m(p̂)

(
δ0` + 2

5δ2`
)
. (5.53)
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This transfer function implies that only ` = 0 and ` = 2 components are transmitted to the

data. Since |m| ≤ ` there are 1 + 5 = 6 components transmitted, so H(exc) is at most a

rank-six operator.

5.3.2 Singular-value decomposition

To establish the actual rank we need to calculate the SVD by solving the eigenvalue equation

[
H(exc)]†H(exc)u(exc)

kn = µ
(exc)
kn u(exc)

kn , (5.54)

where k and n are discrete indices. For now we proceed on faith that using two discrete

indices is an appropriate choice, and we will interpret this choice after we find the singular

system. Expanding Eq. (5.54) in a basis of spherical harmonics yields

∫
S2
dp̂H(exc)∗

`m (p̂)
∑
`′m′

H
(exc)
`′m′ (p̂)U (exc)

kn;`′m′ = µ
(exc)
kn U

(exc)
kn;`m. (5.55)

After rearranging

∑
`′m′

[∫
S2
dp̂H(exc)∗

`m (p̂)H(exc)
`′m′ (p̂)

]
U
(exc)
kn;`′m′ = µ

(exc)
kn U

(exc)
kn;`m, (5.56)

then evaluating the integral in square brackets we find that

∑
`′m′

δ``′δmm′
(
δ0`′ +

4
25δ2`′

)
U
(exc)
kn;`′m′ = µ

(exc)
kn U

(exc)
kn;`m. (5.57)

By inspection, we can choose the normalized eigenfunctions to be

U
(exc)
kn;`m =

(
Ê`m,u

(exc)
kn

)
= δk`δnm, (5.58)

144



which are the spherical harmonics in a standard basis

u
(exc)
kn (̂so) =

(
ê(̂s),u(exc)

kn

)
= Ykn(̂so), (5.59)

and the eigenvalues are

µ
(exc)
kn = δ0k + 4

25δ2k for − k ≤ n ≤ k. (5.60)

There are six non-zero eigenvalues, so we conclude that H(exc) is a rank-six operator.

This fact may come as a surprise since we are modeling the mapping between a continuous

object and continuous data—H(exc) is a CC operator in the language of Barrett and Myers [1].

If the object and the data are both continuous, we might intuitively expect the operator

to have a continuous spectrum, an infinite number of singular functions, and an infinite (or

undefined) rank. This intuition is incorrect—the continuity of the object and data geometries

has no bearing on the continuity of the spectrum. Instead, testing the compactness of the

operator allows us to determine if the operator has a discrete spectra [1, ch. 1.4]. Operators

that satisfy the Hilbert–Schmidt condition are compact, so we plug our kernel into the

Hilbert–Schmidt test and find that

∫
S2
dp̂
∫
S2
dŝo |h(exc)(p̂, ŝo)|2 <∞ (5.61)

because the kernel is bounded and the regions of integration are finite. Therefore, H(exc) is

a compact operator with a discrete spectrum.

Although we have established that H(exc) has a discrete spectrum, it is still not ob-

vious that it should be a rank-six operator. To establish this fact, we can laboriously

calculate the singular value decomposition as we have done above. Alternatively, we can

recognize that the kernel |p̂ · ŝo|2 is a homogeneous polynomial of degree two in three
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variables. Homogeneous polynomials of degree d in n variables form “n multichoose d”

=
((
n
d

))
=
(
n+d−1

d

)
-dimensional vector spaces [192, ch. 1.2], so the d = 2 and n = 3 kernels

form a
((3

2
))

=
(4

2
)

= 6-dimensional vector space.

When we started the singular-value decomposition calculation we made the surprising

choice to use two discrete indices for the eigenvalues and eigenfunctions. Now it is clear

that we needed two indices to index the spherical harmonic eigenfunctions. Additionally,

our use of two discrete indices combined with the structure of the singular values tells us

about the symmetries of the imaging system. The singular spectrum consists of a singlet

and a 5-plet and this multiplet structure indicates this imaging system’s complete rotational

SO(3) symmetry. An N -plet can only appear if the symmetry group of the imaging system

has an irreducible representation of dimension N , and SO(3) has irreducible representations

of every integer dimension (including five as expected). Our eigenfunction indices k and n

specify the irreducible representation and the different eigenfunctions within each irreducible

representation, respectively.

The degeneracy of the 5-plet implies that the singular functions are not unique. We have

chosen the spherical harmonics for convenience, but any linear combination of the ` = 2

spherical harmonics that form an orthonormal set can be chosen as the k = 2 singular

functions. This observation reflects the fact that the `th band of spherical harmonics spans

a (2` + 1)-dimensional rotationally invariant subspace of L2(S2). Any function that is a

linear combination of ` = 2 spherical harmonics can be rotated and it will remain a linear

combination of ` = 2 spherical harmonics.

Given that this imaging system is a rank-6 operator, it is natural to ask if six mea-

surements are sufficient to recover as much as possible about the object. We can answer

this question analytically by choosing six sampling points, calculating the spectrum of the

continuous-to-discrete operator, then comparing the spectrum to the ideal spectrum we found

when we sampled continuously.
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To start we need to choose six sample points, and intuition guides us towards choosing

six equally spaced points on the sphere. The six vertices of an octahedron are equally spaced,

but these vertices are split into three pairs of antipodal points and antipodal samples are

identical since |p̂ · ŝo|2 = |(−p̂) · ŝo|2. Instead, we need to choose six equally spaced axes

on the sphere, and the six inscribed axes of an icosahedron provide exactly the samples we

need. If we place the first sample point along the ẑ axis p̂0 = [0, 0, 1] then the remaining

five sample points are

p̂j =
[

2√
5

cos
(2πj

5

)
,

2√
5

sin
(2πj

5

)
,

1√
5

]
, j ∈ {1, 2, 3, 4, 5}. (5.62)

Now that we have a finite number of samples we can express the complete forward model in

matrix notation as



g0

g1

g2

g3

g4

g5



=
√

4π
6



Y00(p̂0) 2
5Y2−2(p̂0) 2

5Y2−1(p̂0) 2
5Y20(p̂0) 2

5Y21(p̂0) 2
5Y22(p̂0)

Y00(p̂1) 2
5Y2−2(p̂1) 2

5Y2−1(p̂1) 2
5Y20(p̂1) 2

5Y21(p̂1) 2
5Y22(p̂1)

Y00(p̂2) 2
5Y2−2(p̂2) 2

5Y2−1(p̂2) 2
5Y20(p̂2) 2

5Y21(p̂2) 2
5Y22(p̂2)

Y00(p̂3) 2
5Y2−2(p̂3) 2

5Y2−1(p̂3) 2
5Y20(p̂3) 2

5Y21(p̂3) 2
5Y22(p̂3)

Y00(p̂4) 2
5Y2−2(p̂4) 2

5Y2−1(p̂4) 2
5Y20(p̂4) 2

5Y21(p̂4) 2
5Y22(p̂4)

Y00(p̂5) 2
5Y2−2(p̂5) 2

5Y2−1(p̂5) 2
5Y20(p̂5) 2

5Y21(p̂5) 2
5Y22(p̂5)





F00

F2−2

F2−1

F20

F21

F22



,

(5.63)

where we have used the transfer function in Eq. (5.53) and multiplied by 1/
√

6 to normalize.
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Calculating these entries and refactoring yields



g0

g1

g2

g3

g4

g5



=



0.41 0 0 0.91 0 0

0.41 0 0 −0.18 0.63 0.63

0.41 0.37 0.60 −0.18 0.20 −0.51

0.41 −0.60 0.37 −0.18 −0.51 0.20

0.41 0.60 −0.37 −0.18 −0.51 0.20

0.41 −0.37 −0.60 −0.18 0.20 −0.51





F00
2
5F2−2
2
5F2−1
2
5F20
2
5F21
2
5F22



, (5.64)

where we have rounded the matrix entries to two figures. The columns of the matrix in Eq.

(5.64) are orthonormal, so by inspection the data-space singular functions are the columns

of the matrix in Eq. (5.64), the object-space singular functions are the spherical harmonic

functions, and the singular values are identical to the continuous case: a singlet with unit

magnitude and a 5-plet with magnitude 2/5 (equivalently, eigenvalues with magnitude 4/25).

This means that we can make six icosahedral measurements and recover the same amount

of information as if we took measurements at every possible point.

In the continuous case the multiplet structure arose from the SO(3) symmetry of the

imaging system. With discrete samples the imaging system can no longer have a continu-

ous (Lie) symmetry group, so the imaging system must have a discrete symmetry with at

least one five-dimensional irreducible representation. Unsurprisingly, this imaging system

is symmetric under the order-60 icosahedral group (usually denoted A5 since it is isomor-

phic to the alternating group of degree 5), and this group has a five-dimensional irreducible

representation as expected [193, ch. 3.1].

Since the underlying continuous imaging system has SO(3) symmetry, we can place our

discrete samples in any icosahedral sampling position and maintain the same singular values

and singular functions. In other words, when we chose our sampling scheme in Eq. (5.62)

we only aligned our icosahedral samples with the ẑ axis for convenience. We could align
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our icosahedral samples with any axis and achieve the same result. Figure 5.3 shows two

possible sampling schemes that have the same singular values and singular functions.

Figure 5.3: Two optimal icosahedral sampling schemes—each dot indicates a placement
of the illumination polarization p̂. All icosahedral sampling schemes are optimal, and new
icosahedral schemes can be found by rigidly rotating the illustrated points to other positions.

Since the icosahedral sampling scheme has the same spectrum and singular values as

continuous sampling, we naturally expect that the icosahedral sampling scheme is optimal

in some sense. Foreman et al. [190] have studied a related problem of finding optimal

sampling schemes for polarimeters that attempt to reconstruct the polarization of light (not

parameters of fluorescent objects like we’re considering here). Although their parameters and

measurement system are different from ours, their formulation of an optimization problem

applies to our problem directly. They show or provide references for the equivalence of

the following definitions of an optimal sampling scheme: (1) the condition number of H

is minimized, (2) the equally weighted variance (a scalar measure of noise amplification)

[188] of H is minimized, (3) the determinant of H†H is maximized, (4) the product of the

eigenvalues of H†H is maximized. We use their definition of an optimal sampling scheme

and show that icosahedral sampling is optimal.

For an arbitrary six-measurement imaging operator H(6,exc) (not necessarily with icosa-

hedral sampling) with entries

(
êj ,H(6,exc)ê(̂so)

)
= 3√

6 · 4π
(p̂j · ŝo)2, (5.65)
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we can calculate the trace of H(6,exc)[H(6,exc)]† as

tr
(
H(6,exc)[H(6,exc)]†

)
=

5∑
j=0

∫
S2
dŝo

9
6 · 4π (p̂j · ŝo)4 = 9

2

∫ π
0
dθ sin θ cos4 θ = 9

5 . (5.66)

Therefore, the sum of the eigenvalues of H(6,exc)[H(6,exc)]† is 9/5 independent of where we

place the sample points {p̂j}. The maximum determinant is obtained whenH(6,exc)[H(6,exc)]†

is diagonal, and we know that the first diagonal entry of [H(6,exc)]†H(6,exc) is independent

of the sample points

(
Ê00, [H(6,exc)]†H(6,exc)Ê00

)
= 1. (5.67)

Therefore, the optimal first eigenvalue is one. To find the five remaining optimal eigenvalues

we need to maximize the product of all six eigenvalues while fixing their sum to 9/5, and

we can use the method of Lagrange multipliers to show that this is achieved when the five

remaining eigenvalues are 4/25 (equivalently, the singular values are 2/5). These optimal

eigenvalues are identical to the eigenvalues we found for icosahedral sampling, so icosahedral

sampling scheme is optimal.

As usual, mathematicians have studied a broader class of the types of sampling problems

discussed here. Foreman et al. [190] identified their sampling schemes as examples of spherical

2-designs in R3 [194]. More generally, N -point spherical t-designs specify a set of N points

that can be sampled and averaged to exactly integrate a degree t polynomial on the sphere,

and tables of spherical t-designs are available from Neil Sloane’s website [195].

Here we are attempting to find sampling points that we can average to exactly integrate

functions of the form |p̂·ŝo|2f (̂so). Our singular value decomposition showed that we can only

hope to reconstruct object functions f (̂so) that are homogeneous polynomials of degree 2, and

the function |p̂ · ŝo|2 is also a homogeneous polynomial of degree 2. Therefore, |p̂ · ŝo|2f (̂so) is

a homogeneous polynomial of degree 4. Exact sampling rules for homogeneous polynomials
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of degree 2t on the sphere are called spherical (t, t)-designs or spherical half-designs of order

2t. As expected, the minimal spherical (2, 2)-design in R3 consists of six equiangular lines

that go through the vertices of an icosahedron [196].

5.3.3 Optimal illumination polarizations under geometric constraints

Many experimental situations have geometric constraints that make icosahedral sampling

infeasible. In these cases it is valuable to know how to find and optimize sampling schemes

that are full rank under the constraint. Suppose that we make polarization measurements

everywhere on a great circle of the sphere so that the data are given by

g(p̂) =
∫
S2
dŝo δ(p̂ · n̂)(p̂ · ŝo)2f̄ (̂so), (5.68)

where n̂ ∈ S2 is an arbitrary axis. In this case the kernel of the operator is a homogeneous

polynomial of degree 2 in 2 variables (the delta function collapses one variable), so the rank

of the operator is
((2

2
))

=
(3

2
)

= 3. This means that if polarization sampling is restricted to

a single great circle, then three measurements are sufficient to make the operator full rank.

Now consider a geometry where we make polarization measurements everywhere on two

great circles so that our data are given by

gi(p̂) =
∫
S2
dŝo δ(p̂ · n̂i)(p̂ · ŝo)2f (̂so), for i = 0, 1, (5.69)

where n̂0 and n̂1 are distinct axes n̂0 · n̂1 6= 1. We can no longer make a combinatoric

argument for the rank of this operator, but we can give an upper bound by constructing a

degree-two null function. Without loss of generality, choose n̂0 = ŷ and n̂1 = sinϕx̂+cosϕŷ.

In spherical coordinates, ŝo = cosφ sin θx̂ + sinφ sin θŷ + cos θẑ, and the kernel becomes

δ(p̂ · n̂i)(p̂ · ŝo)2 = cos2(φ−φi), where φ0 = 0 and φ1 = ϕ. For this sampling scheme we can
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construct a null function

f (null)(̂so) =


sin2 θ

(
cos 2φ− 1

2
)
, if ϕ = π

2 ,

sin2 θ
(
cos 2φ+

[1−cos 2ϕ
sin 2ϕ

]
sin 2φ− 1

2
)
, otherwise,

(5.70)

which we can confirm is a null function with the calculation

∫
S2
dŝo cos2(φ− φi)f (null)(̂so) = 0, for i = 0, 1. (5.71)

The maximum rank is six, and we have constructed one null function. Therefore, the rank

of an imaging system that samples everywhere on two unique great circles is at most five.

It follows that any rank-six sampling configuration must not be constrained to two great

circles.

We conjecture that sampling everywhere on any three unique great circles will give rise

to a rank-six operator. Although we have been unable to show this conclusively, we have

been unable to find any exceptions. When we place six samples on the sphere that cannot be

connected by two great circles, calculate their corresponding matrix elements, then calculate

the matrix rank, the rank has been six for every configuration of the 10,000 random config-

urations we have tried. In summary, to find a rank-six sampling operator it is necessary for

the six samples to live on three unique great circles, and we suspect that this condition is

sufficient.

Once a set of candidate full-rank sampling operators has been identified, we need to

choose between them. We suggest choosing the sampling operator that optimizes the con-

dition number of the measurement matrix. A different metric could be optimized if the

experimentalist is interested in estimating a particular parameter.
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5.4 SVD of polarized illumination and epi-detection

For our final SVD we analyze an imaging system that combines icosahedral polarized illu-

mination with a high-NA detection system. We model this imaging system with

gj(rd) =
∫
S2
dŝo

∫
R2
dr⊥o h(det)(rd − r⊥o , ŝo)h(exc)(p̂j , ŝo)f̄(r⊥o , ŝo), (5.72)

where h(det)(rd − r⊥o , ŝo) is defined in Eq. (5.19), h(exc)(p̂j , ŝo) is defined in Eq. (5.49), and

p̂j are the icosahedral sampling points in Eq. (5.62) together with p̂0 = [0, 0, 1]. To simplify

our notation we define a Hilbert-space operator H(epi) with entries

(
ê(rd)êj ,H(epi)ê(r⊥o )ê(̂so)

)
≡ h

(epi)
j (rd − r⊥o , ŝo) = h(det)(rd − r⊥o , ŝo)h(exc)(p̂j , ŝo).

(5.73)

Similar to the previous two sections, we calculate the entries of H(epi) in several different

bases before calculating its SVD. Expressing the entries in a basis of object-space spherical

harmonics yields

H
(epi)
j,`m (rd − r⊥o ) ≡

(
ê(rd)êj ,H(epi)ê(r⊥o )Ê`m

)
=
∫
S2
dŝo h(det)(rd − r⊥o , ŝo)h(exc)(p̂j , ŝo)Y`m(̂so)

=
∫
S2
dŝo

∑
`′m′

H
(det)
`′m′ (rd − r⊥o )Y`′m′ (̂so)

 ∑
`′′m′′

H
(exc)
`′′m′′(p̂j)Y`′′m′′ (̂so)

Y`m(̂so)

=
∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(det)
`′m′ (rd − r⊥o )H(exc)

`′′m′′(p̂j). (5.74)

Both H(det)
`m (rd−r⊥o ) and H(exc)

`m (p̂j) are only non-zero for ` = 0, 2, so H(epi)
j,`m (rd−r⊥o ) is only

non-zero for ` = 0, 2, 4. Therefore, we need to calculate H(epi)
j,`m (rd − r⊥o ) for 1 + 5 + 9 = 15

spherical harmonic coefficients, six illumination polarizations j, and every point on a 2D

plane rd − r⊥o .
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Next, we calculate the entries of H(epi) in an object-space basis of spherical harmonics

and complex exponentials and a data-space basis of complex exponentials

(
ê(νd)êj ,H(epi)ê(νo)Ê`m

)
≡ H(epi)

j,`m(νo)δ(νd − νo), (5.75)

where

H(epi)
j,`m(ν) =

∫
R2
drH(epi)

j,`m (r) exp[−2πir · ν] =
∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H(det)
`′m′ (ν)H(exc)

`′′m′′(p̂j). (5.76)

We have already calculated H(det)
`m (ν) and H(exc)

`m (p̂j), so we have a clear path for calculating

H(epi)
j,`m(ν). The spatio-angular transfer function H(epi)

j,`m(ν) is only non-zero for fifteen spherical

harmonic coefficients, six illumination polarizations j, and every point within a disk of radius

νc, which we plot in Fig. 5.4 for an in-focus object.

Now we can proceed towards the SVD by solving the eigenvalue problem

[H(epi)]†H(epi)u(epi)
ρ,k = µ

(epi)
ρ,k u(epi)

ρ,k . (5.77)

Following our earlier work, we choose a basis for our object-space singular functions and use

shift-invariance to fix the spatial component of the singular function

(
ê(r⊥o )Ê`m,u

(epi)
ρ,k

)
= Ũ

(epi)
k;`m(ρ) exp[2πiρ · r⊥o ]. (5.78)

Next, we write the entries of the adjoint operator as

(
ê(r⊥o )Ê`m, [H(epi)]†ê(rd)êj

)
= H

(epi)∗
j,`m (rd − r⊥o ). (5.79)
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Figure 5.4: The in-focus transfer function H(epi)
j,`m(ν) for six icosahedral illuminations (rows)

and fifteen spherical harmonic components (columns) with NA = 1.4, n0 = 1.5, and λ =
500 nm. Each column uses its own color scale (bottom color bars). The position within each
axis is the continuous spatial frequency ν. The transfer function is zero when |ν| ≥ νc =
2NA/λ, when j < 0 or j > 6, when ` 6= 0, 2, 4, or when |m| > `.

Now we can calculate the entries of [H(epi)]†H(epi) as

(
ê(r⊥o )Ê`m, [H(epi)]†H(epi)ê(r⊥

′
o )Ê`′m′

)
≡ p

(epi)
`m,`′m′(r

⊥
o − r⊥

′
o ) (5.80)

=
∑
j

∫
R2
drdH

(epi)∗
j,`m (rd − r⊥o )H(epi)

j,`′m′(rd − r⊥
′

o ).

Writing the eigenvalue problem explicitly yields

(
ê(r⊥o )Ê`m, [H(epi)]†H(epi)u(epi)

ρ,k

)
= µ

(epi)
ρ,k Ũ

(epi)
k;`m(ρ) exp[2πiρ · r⊥o ]. (5.81)

Rewriting the left-hand side in terms of known transfer functions yields

(
ê(r⊥o )Ê`m, [H(epi)]†H(epi)u(epi)

ρ,k

)
=
∑
`′m′

∫
R2

dr⊥o
′
p
(epi)
`m,`′m′(r

⊥
o −r⊥o

′)Ũ (epi)
k;`′m′(r

⊥
o
′)exp[2πiρ · r⊥o

′]
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= exp[2πiρ · r⊥o ]
∑
`′m′

P
(epi)
`m,`′m′(ρ)Ũ (epi)

k;`′m′(ρ) (5.82)

= exp[2πiρ · r⊥o ]
∑
`′m′

∑
j

H(epi)∗
j,`m (ρ)H(epi)

j,`′m′(ρ)Ũ (epi)
k;`′m′(ρ),

where we have used the following calculation

P
(epi)
`m,`′m′(ρ) =

∫
R2
dr p(epi)`m,`′m′(r) exp[−2πρ · r] =

∑
j

H(epi)∗
j,`m (ρ)H(epi)

j,`′m′(ρ). (5.83)

Equating the right-hand sides of Eqs. (5.81) and (5.82) yields

∑
`′m′

∑
j

H(epi)∗
j,`m (ρ)H(epi)

j,`′m′(ρ)
 Ũ (epi)

k;`′m′(ρ) = µ
(epi)
ρ,k Ũ

(epi)
k;`m(ρ), (5.84)

where the brackets enclose the entries of a 15 × 15 matrix for each ρ. Each matrix is the

sum of six outer products, so the matrix will be at most rank six. We refer to the rank of

each 15× 15 matrix as the angular rank Ra of the operator H(epi).

Although we cannot calculate the eigenfunctions and eigenvalues of a 15× 15 matrix in

closed form, we can easily find a numerical approximation. Once the eigenvalues µρ,k and the

15× 1 eigenvectors Ũ (epi)
k;`m(ρ) have been approximated and normalized, it is straightforward

to calculate the complete object-space singular functions in the standard basis

u
(epi)
ρ,k (r⊥o , ŝo) = exp[2πiρ · r⊥o ]

∑
`m

Ũ
(epi)
k;`m(ρ)Y`m(̂so). (5.85)

For visualizing the singular functions, the following definition is useful

ũ
(epi)
ρ,k (̂so) =

∑
`m

Ũ
(epi)
k;`m(ρ)Y`m(̂so). (5.86)
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Finally, the data-space singular functions can be found by calculating 6× 1 vectors

Ṽ
(epi)
k;j (ρ) =

√
µ
(epi)
ρ,k

∑
`m

H(epi)
j,`m(ρ)Ũ (epi)

k;`m(ρ), (5.87)

then multiplying by complex exponentials

v
(epi)
ρ,k;j(rd) = Ṽ

(epi)
k;j (ρ) exp[2πiρ · rd]. (5.88)

Figure 5.5 shows the angular part of the object-space singular functions ũ(epi)ρ,k (̂so) and

the eigenvalues µ(epi)ρ,k that we approximated numerically. When we calculated the singular

system of H(det) we established the rotational symmetry of the eigenvalues analytically by

studying properties of the operator entries—see Eq. (5.29). Although we know of no similar

relationship for the singular system of H(epi), we have numerical evidence for the same

rotational symmetry. More specifically, the eigenvalues µ(epi)ρ,k only depend on |ρ|, so we

only need to calculate the singular system for each |ρ| on the positive real line R+. This

degeneracy reflects that fact that rigid rotations of the whole object (each position and

orientation at the same time) commute with [H(epi)]†H(epi).

There is at least one more easily interpreted degeneracy in the eigenvalue spectrum µ
(epi)
ρ,k .

For ρ = 0 the eigenvalue spectrum consists of two singlets and two doublets. When we

studied the eigenvalues of [H(exc)]†H(exc) we found that the eigenvalue spectrum consisted

of a singlet and a 5-plet, which reflected the SO(3) symmetry of the imaging operator. Now

that we have combined the excitation and detection operators into a single operator we

have lost the complete SO(3) symmetry because the collection solid angle on the detection

side is less than 2π (equivalently, NA < no). This fact breaks the SO(3) symmetry, but

the imaging system still retains an O(2) symmetry with its characteristic one- and two-

dimensional irreducible representations [159]. This degeneracy reflects the fact that rotations

of the fluorophore distributions at each spatial position commute with [H(epi)]†H(epi) when
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ẑ
|ρ| µ

(epi)
ρ0,0

=1 µ
(epi)
ρ1,0

=0.4 µ
(epi)
ρ2,0

=0.09 µ
(epi)
ρ3,0

=0.01 µ
(epi)
ρ4,0

=0.002

|ρ| µ
(epi)
ρ0,1

=0.2 µ
(epi)
ρ1,1

=0.07 µ
(epi)
ρ2,1

=0.02 µ
(epi)
ρ3,1

=0.003 µ
(epi)
ρ4,1

=0.0004

|ρ| µ
(epi)
ρ0,2

=0.2 µ
(epi)
ρ1,2

=0.07 µ
(epi)
ρ2,2

=0.02 µ
(epi)
ρ3,2

=0.002 µ
(epi)
ρ4,2

=0.0004

|ρ| µ
(epi)
ρ0,3

=0.1 µ
(epi)
ρ1,3

=0.05 µ
(epi)
ρ2,3

=0.01 µ
(epi)
ρ3,3

=0.001 µ
(epi)
ρ4,3

=0.0002

|ρ| µ
(epi)
ρ0,4

=0.1 µ
(epi)
ρ1,4

=0.05 µ
(epi)
ρ2,4

=0.009 µ
(epi)
ρ3,4

=0.0008 µ
(epi)
ρ4,4

=0.0002

|ρ| µ
(epi)
ρ0,5

=0.1 µ
(epi)
ρ1,5

=0.03 µ
(epi)
ρ2,5

=0.004 µ
(epi)
ρ3,5

=0.0007 µ
(epi)
ρ4,5

=0.0001

Figure 5.5: The singular system of H(epi) for in-focus objects measured with six icosahedral
illumination polarizations. The left column shows the eigenvalues of [H(epi)]†H(epi) as a
function of |ρ|, while the right columns show the angular part of five object-space singular
functions ũ(epi)k (ρ, ŝo)—see Eq. (5.86). The five choices of ρ are labeled at the top of each
column and are marked with crosses in the eigenvalue spectrum. All six eigenvalue spectra
are shown in each row so they can be readily compared. The radius of each glyph along
direction ŝo indicates the magnitude |ũ(det)k (ρ, ŝo)| while the color indicates the sign—red is
positive and blue is negative.
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the fluorophore distribution is spatially uniform (i.e.ρ = 0).

For ρ 6= 0 the doublets split into singlets except at specific spatial frequencies (for ex-

ample, see |ρ| ≈ 3νc/4 for k = 4 and k = 5). These points indicate symmetry operators

that rotate individual fluorophore distributions at a fixed non-zero spatial frequency. These

points are called “accidental” degeneracies, and they indicate extra members of the symmetry

group of H(epi) that are difficult to predict. In addition to the points where two branches of

the spectrum meet, there are accidental degeneracies between branches at branch-dependent

spatial frequencies. To spot these degeneracies, draw horizontal lines through the spectra

in the left column of Fig. 5.5 and find lines that intersect multiple branches. These degen-

eracies indicate symmetry operators that rotate and scale objects simultaneously. We have

not studied these accidental degeneracies in detail, and we do not know what underlying

symmetry groups they indicate. Although accidental degeneracies are of theoretical interest,

it is not clear to us if studying them further will lead to benefits beyond marginally faster

singular value decompositions.

5.5 Reconstruction algorithms

In this section we develop an efficient reconstruction algorithm for the microscope we mod-

eled in the previous section: we illuminate with polarized light, image with a high-NA ob-

jective, then repeat the imaging under several illumination polarization settings. This class

of imaging system can be modeled by

gj(rd) =
∫
R2
dr⊥o

∫
S2
dŝo h

(epi)
j (rd − r⊥o , ŝo)f̄(r⊥o , ŝo), (5.89)

where the kernel factors into

h
(epi)
j (r, ŝo) = h(det)(r, ŝo)h(exc)(p̂j , ŝo). (5.90)
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Our goal is to estimate as much as we can about the object f̄(r⊥o , ŝo) from our measurements

gj(rd) and our knowledge of the function h(epi)j (r, ŝo).

Throughout this section we will use continuous coordinates to model positions in the

object r⊥o and on the detector rd. Real data will have discrete detector coordinates, but for

now we treat continuous coordinates as a good approximation for discrete coordinates. The

reconstruction algorithms in this section can be applied to discrete data by approximating

the continuous Fourier transforms by discrete Fourier transforms (with suitable scaling and

padding).

5.5.1 Step 1: Modeling and calibration

Before beginning the reconstruction we need a model for the imaging system. The easiest

way to obtain a model h(epi)j (r, ŝo) is to adapt the models presented earlier in this chapter.

Measuring this function directly is a potential option, but this would require precise control

over the orientation of a single emitter, which is not currently feasible.

However, we can make experimentally feasible measurements of components of h(epi)(r, ŝo)

if we change to a different basis. For example, if we change to a basis of object-space spherical

harmonics using

H
(epi)
j,`m (r) =

∫
S2
dŝo h(epi)(r, ŝo)Y`m(̂so), (5.91)

then we can measure H(epi)
j,00 (r) by placing beads with uniformly oriented dipoles in the

imaging system and measuring their images. Additionally, if we change to a basis of object-

and data-space spatial harmonics using

H(epi)
j,`m(ν) =

∫
R2
drH(epi)

j,`m (r) exp[−2πir · ν], (5.92)

then we can measure H(epi)
j,00 (0) by placing a spatially and angularly uniform fluorescent lake in
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the imaging system and measuring its image. Although neither of these approaches provide

complete measurements of h(epi)j (r, ŝo), these simple objects can be used to help calibrate

the imaging system and test theoretical models.

5.5.2 Step 2: Precalculating the SVD

With a model of the imaging system h
(epi)
j (rd−r⊥o , ŝo) in hand, we can precalculate the SVD.

It is tempting to discretize object space and data space, calculate a finite-dimensional matrix

representation of h(epi)j (rd−ro, ŝo), then numerically approximate its SVD, but a back-of-the-

envelope calculation reveals that this approach does not scale well. If we discretize the spatial

components into N2 voxels, discretize the sphere into S points, and make J measurements,

then a discrete version of h(epi)j (rd− r⊥o , ŝo) will require N2S ×N2J entries and calculating

its SVD will require O(N6J2S) operations when S > J [197]. In real experiments N ≈ 103,

S ≈ 102 and J ≈ 6, so storing h(epi)j (rd − r⊥o , ŝo) in double-precision floating-point format

will require ≈ 50 TB of memory and taking its SVD will require ≈ 1022 floating-point

operations.

Fortunately, we can exploit symmetry to reduce the memory and computation require-

ments. The first step is to choose a basis that provides a compact description of the imaging

system. In object-space spherical harmonics and object- and data-space complex exponen-

tials, h(epi)j (rd − r⊥o , ŝo) becomes

H(epi)
j,`m(ν) =

∫
R2
dr
∫
S2
dŝo h(epi)(r, ŝo) exp[−2πir · ν]Y`m(̂so), (5.93)

which can be computed most efficiently using

H(epi)
j,`m(ν) =

∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H(det)
`′m′ (ν)H(exc)

`′′m′′(p̂j), (5.94)
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where

H(det)
`m (ν) =

∫
R2
drH(det)

`m (r) exp[−2πir · ν], (5.95)

H
(det)
`m (r) =

∫
S2
dŝo h(det)(r, ŝo)Y`m(̂so) ∝

∑
j,j′=0,1,2

G
mεjεj′
`11 Bjj′(r, ro), (5.96)

H
(exc)
`m (p̂j) =

∫
S2
dŝo h(exc)(p̂j , ŝo)Y`m(̂so), (5.97)

and more detail on calculatingH(det)
`m (r) from Bjj′(r, ro) can be found in section 5.2. Because

H(epi)
j,`m(ν) is only non-zero for 15 spherical harmonic components, we can discretize it using

only 15N2J entries ≈ 10 MB.

Next, we calculate and store the singular value decomposition of a 15×J matrix at each

of the N2 spatial frequencies. Most numerical packages can approximate SVDs from the

matrices H(epi)
j,`m(ν) directly, but if an SVD routine is unavailable the eigendecomposition of

P
(epi)
`m,`′m′(ρ) =

∑
j

H(epi)∗
j,`m (ρ)H(epi)

j,`′m′(ρ), (5.98)

can be computed instead. In either case, the result will be a set of R = N2J (if the rank

of each 15× J matrix is J) eigenvalues µ(epi)ρ,k , object-space singular functions Ũ (epi)
k;`m(ρ), and

data-space singular functions Ṽ (epi)
k;j (ρ). In this basis storing the SVD only requires≈ 20 MB,

and computing the SVD of N2 matrices of size 15 × J only requires ≈ 1010 floating point

operations.

5.5.3 Step 3: Calculate the regularized pseudoinverse

Earlier in this chapter we introduced a Tikhonov-regularized pseudoinverse that could be

expressed in terms of the forward operator’s SVD as

f̂η =
R∑
i=0

√
µi

µi + η
ui (vi,g) . (5.99)
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This solution is basis-independent, but we would like our final result to be in the easily

interpreted standard basis. Storing the SVD in a standard basis is infeasible, so we need

to apply the Tikhonov-regularized pseudoinverse in the spatial frequency basis. To put our

data in the correct basis we take our raw data gj(rd) and take its spatial Fourier transform

Gj(ν) =
∫
R2
drd gj(rd) exp[−2πird · ν]. (5.100)

Now we can apply a Tikhonov-regularized pseudoinverse using our stored SVD

ˆ̄Fη;`m(ν) =
Ra∑
k=1

√
µν,k

µν,k + η
Ũ
(epi)
k;`m(ν)

∑
j

Ṽ
(epi)
k;j (ν)Gj(ν), (5.101)

where Ra is the angular rank. The result ˆ̄Fη;`m(ν) contains estimates of the all of the

parameters we can hope to reconstruct, but these estimates are in a basis that is difficult

to interpret. We would like to store our parameters in a standard basis, but this would

require much more storage than necessary. If we discretize the sphere into S points then

we would need to store (S/Ra)× more information than necessary. Smooth visualizations

require S ≈ 500, so storing in a standard basis will require ≈ 75× more information than

necessary.

We can move one step closer to the standard basis while minimizing storage inflation.

If we take the inverse Fourier transform of ˆ̄Fη;`m(ν) we find the estimates of the spherical

harmonic coefficients at each spatial position

ˆ̄Fη;`m(r⊥o ) =
∫
R2
dν ˆ̄Fη;`m(ν) exp[2πir⊥o · ν]. (5.102)

Prescribing firm guidelines for choosing a regularization parameter η is impossible without

full knowledge of the stochastic properties of the objects and imaging process. We recommend

performing reconstructions over a wide range of η values (including η = 0) then choosing the
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0.90

0.86

ODF
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Figure 5.6: Demonstration of angular visualization schemes. Each column shows a different
angular function for a single spatial point f̄ (̂so) specified by the upper label. The first
row shows an orientation distribution function (ODF) visualization that doubly encodes the
magnitude of f̄ (̂so) into the glyph radius and glyph color. Notice that red encodes the
maximum for each glyph instead of a fixed value. The second row shows the peak directions
visualized with an oriented cylinder colored using the absolute value method. Once again, the
peak orientation is doubly encoded into the orientation and color of the cylinder. Finally, we
calculate the density ρ and the generalized fractional anisotropy (GFA). These scalar values
can be visualized using any color map.

smallest value of η that suppresses noise without washing out features of interest. Although

the choice of η is qualitative, we find empirically that high-quality data can yield high-quality

reconstructions for a wide range of η—see the reconstructions in chapter 6.

5.5.4 Step 4: Visualize and interpret

Figure 5.6 demonstrates four ways to visualize individual spatial points from a spatio-angular

reconstruction. We have found these visuals to be the most useful for understanding and

interpreting reconstructions. In this section we describe how to calculate these visuals in

detail.

Starting with the stored reconstruction ˆ̄Fη;`m(r⊥o ), our goal is to calculate and plot useful
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visuals. To avoid storage inflation we have postponed our conversion to a standard basis

until visualization time. Our first step is to choose a set of N points on the sphere {ŝo,n} that

we would like to visualize. The Fibonacci lattice is an attractive choice because it leads to

well-spaced points that are inexpensive to compute for arbitrary N . The polar angles {θn}

and azimuthal angles {φn} of the Fibonacci lattice with N points are given by [198, 199]

θn = cos−1(1− (2n+ 1)/N), (5.103)

φn = π(3−
√

5)n. (5.104)

Choosing a larger N will make the final visuals appear smoother at additional computational

expense. Empirically we have found that N = 500 is an appropriate starting point for most

visualizations.

Next, we choose a set of spatial points {r⊥o,i} where we would like to visualize the ob-

ject. We recommend starting with a modest number of spatial points by downsampling or

thresholding the reconstruction because visualizing every spatial point is visually overwhelm-

ing and computationally expensive. Empirically we have found that visualizing more than

104 spatial points overwhelms most users who are trying to interpret the results and most

computers that are trying to render them without a dedicated graphics card.

With our spherical points {ŝo,n} and spatial points {r⊥o,i} we can calculate the orientation

distribution functions (ODFs) at each point

ˆ̄fη(r⊥o,i, so,n) =
∑
`m

ˆ̄Fη;`m(r⊥o,i)Y`m(so,n). (5.105)

Notice that the spherical harmonics Y`m(so,n) can be computed once then reused. The ODFs

can be visualized by drawing a glyph at each point {r⊥o,i} with a radius along each direction

{ŝo,n} given by ˆ̄fη(r⊥o,i, so,n). We have used red and blue to indicate positive and negative

values or a blue-white-red color map to doubly encode the value of ˆ̄fη(r⊥o,i, so,n) into the
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radius and the color of the glyph.

In addition to drawing a complete glyph at each point {r⊥o,i}, we have found that draw-

ing a cylinder or thin line at each point {r⊥o,i} along the direction where the function is

largest ŝ(pk)η (r⊥o,i) = argmaxŝo
ˆ̄fη(r⊥o,i, ŝo) is a good way to summarize and understand the

reconstruction. In many cases the viewing direction obscures the direction of the cylinder

or line, so encoding the direction of the line in color can reduce visual degeneracy. In all of

our reconstructions we have colored the x̂, ŷ, and ẑ components of ŝ(pk)η (r⊥o,i) with weighted

red, green, and blue color channels, respectively. In the computer graphics and magnetic

resonance imaging (MRI) literature this color mapping is usually called the absolute value

method [200]. Although the absolute value method is widely used and easy to understand, it

suffers from ambiguities that can be avoided by using more sophisticated color maps [201].

We can also calculate and plot scalar summary statistics for each spatial point. The

estimated number of fluorophores at each point or fluorophore density is given directly by

ρ̂η(r⊥o ) = ˆ̄Fη;00(r⊥o ), (5.106)

which is a subset of the stored reconstruction in Eq. (5.102). Another useful scalar summary

statistic is the generalized fractional anisotropy [202, 203], which is

ˆGFAη(r⊥o ) =

√√√√√√√√1−

[
ˆ̄Fη;00(r⊥o )

]2
∑
`m

[
ˆ̄Fη;`m(r⊥o )

]2 . (5.107)

Although both of these parameters are useful for summarizing the data, strictly speaking

neither is estimable since they do not live in the measurement space of the imaging system.

We know that estimates of ρ and GFA can be biased, so we need to be skeptical of any

conclusions drawn from them. Averaging over larger spatial regions can reduce (but not

eliminate) these biases.
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5.5.5 Summary and practical tips
Table 5.1 summarizes the steps of the reconstruction algorithm with numpy pseudocode to

aid implementation. In no particular order, we give a few practical tips for implementing

this reconstruction algorithm.

Although the spherical harmonic indices ` and m are convenient for pen-and-paper cal-

culations, a single collapsed index allows us to use simple rectangular arrays to store values.

We only need the even spherical harmonics, so an appropriate collapsed index is given by

s = [`(`+ 1) +m]/2.

The numpy function einsum (inspired by Krister Åhlander’s C++ library [204]) is an ex-

tremely efficient way to program the multidimensional array multiplications required for

these reconstructions. The effort required to learn einsum is small compared to the divi-

dends paid during the implementation of a single complicated multidimensional array mul-

tiplication. See the examples in Table 5.1 and numpy’s excellent documentation [205] to get

started.

We recommend thoroughly understanding the behavior of the forward model before

attempting to implement a reconstruction. Starting with a known numerical phantom

f̄(r⊥o , ŝo), calculate its spatio-angular spectrum using

F̄`m(ν) =
∫
R2
dr⊥o

∫
S2
dŝo f̄(r⊥o , ŝo) exp[−2πir⊥o · ν]Y`m(̂so). (5.108)

Next, simulate the data spectrum using

Gj(ν) =
∑
`m

H(epi)
j,`m(ν)F̄`m(ν). (5.109)

Finally, calculate the data in a standard basis

gj(rd) =
∫
R2
drdGj(ν) exp[2πird · ν]. (5.110)

Models can be debugged or improved by comparing the results with the microscope devel-

oper’s expectations and adjusting the model accordingly.
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5.6 Discussion and conclusions

5.6.1 Are icosahedral polarization samples always optimal?

In this chapter we showed that icosahedral polarization samples are optimal for polarized

illumination with uniform detection, but we have made no claims about optimal sampling

schemes for polarized illumination with high-NA detection. We suspect that icosahedral

sampling schemes are nearly optimal for high-NA detection, but truly optimal sampling

schemes will likely depend on the detection NA.

Our earlier definition of an optimal sampling scheme was the scheme that minimized

the condition number of the operator, but the condition number is not defined for non-

compact operators like the ones we are considering here. Instead, the Schatten 2-norm could

be optimized. If µρ,k(H) are the eigenvalues of H†H with continuous index ρ ∈ R2 and

discrete index k, then the Schatten 2-norm is

||H||2 =
(∑
k

∫
R2
dρµρ,k(H)

)1
2 , (5.111)

which is large when H has large and uniform singular value spectra [206].

5.6.2 Does the reconstruction algorithm exploit every symmetry?

Our reconstruction algorithm exploited the shift-invariance of the imaging system to mini-

mize the computation and storage requirements for our algorithm. Several other symmetries

are present (various rotational symmetries, symmetries related to accidental degeneracies),

so it is natural to ask if we can further reduce the computation and storage requirements.

In short, every symmetry can be exploited to reduce computation and storage require-

ments, but some symmetries are more challenging to exploit than others. Shift-invariance is

easy to exploit because the symmetry group is abelian (elements of the group commute) and
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it acts on the plane R2 transitively (any point can be shifted to any other point by the ac-

tion of a group element). We have demonstrated how to exploit these types of symmetries

using Fourier transforms (and their associated abelian FFT algorithms) to solve the SVDs

and reconstruction problems in a basis of spatial frequencies.

In contrast, the one-dimensional rotation group (or the rotation group in two dimensions

SO(2)) is an abelian group that acts non-transitively on the plane R2, so it partitions the

object and data geometries into orbits. Some orbits are free, which means that every group

action moves every point in the orbit (like SO(2) acting on any circle about the origin), while

other orbits are stable under some group elements (like SO(2) acting on the origin). The

situation is further complicated by non-abelian symmetry groups with multi-dimensional

irreducible representations (like O(2) and its two-dimensional irreducible representations).

Åhlander and Munthe-Kaas have shown how to exploit every symmetry to reduce storage

and computation requirements when finding the eigendecomposition of finite-dimensional

matrices [207]. This work is extremely relevant to our problem of finding the SVD of

continuous-to-discrete operators since these SVDs require eigendecompositions of finite-

dimensional matrices. Additionally, there are non-abelian FFT algorithms that can be used

to improve the speed of the basis changes [208]. Non-abelian symmetries have not been com-

pletely exploited in image science (though they have been identified, see [1, ch. 7.2.9] and

[181, sec. 6]), and we view these techniques as important future that work may lessen the

burden of many SVD algorithms.

5.6.3 Can we use alternative priors or reconstruction algorithms?

Reconstructing with a Tikhonov-regularized pseudoinverse requires us to assume that we

are estimating independent, zero-mean, Gaussian-distributed random variables with vari-

ance 1/(2η), where η is the regularization parameter. Although this might be a reasonable

approximation to the true distribution of the parameters, a broader class of reconstruction
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algorithms would clearly be desirable. Additionally, pseudoinverse algorithms like the one

described here can result in negative estimates for f̄(ro, ŝo), which is clearly undesirable.

There is a large literature of reconstruction algorithms for linear imaging systems—see

Barrett and Myers for a review [1, ch. 15]. Among these algorithms are techniques for

incorporating statistical priors, constraining solutions to be positive, and guaranteeing con-

vergence, among other attractive properties. However, a large majority of these algorithms

require the reconstruction to be performed in the standard basis, which imposes extremely

large storage and computation constraints on this specific problem. These considerations

have led us to avoid several common reconstruction algorithms like Richardson–Lucy itera-

tion (or maximum-likelihood expectation maximization (MLEM)) because the computational

requirements are excessive. We view Tikhonov-regularized pseudoinverse reconstructions as

an imperfect starting place, and we think that finding or developing reconstruction algo-

rithms that incorporate statistical priors and positivity constraints while remaining efficient

in any basis is important future work.
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CHAPTER 6

DUAL-VIEW SPATIO-ANGULAR MICROSCOPY
So much of our human resourcefulness comes from having

multiple ways to describe the same situations—so that
each one of those different perspectives may help us

to get around the deficiencies of the other ones.
— Marvin Minsky The Emotion Machine (2006)

In this chapter we build on our work in chapters 2–5 to develop a model and reconstruction

scheme for a polarized-illumination dual-view light-sheet microscope. Notably, we apply

our sampling results from chapter 5 to design a rank-6 polarization sampling scheme that is

optimal under practical geometric constraints. We verify our methods by imaging giant unil-

amellar vesicles (GUVs)—a physical phantom with an approximately known spatio-angular

density—and confirming that our experimental results match our expectations. We conclude

by demonstrating our methods on a biological specimen—actin-labeled U2OS cells.

6.1 Forward model and transfer functions

We start by calculating the transfer function for a dual-view inverted selective plane illumina-

tion microscope (diSPIM) [101] with asymmetric detection objectives (1.1 and 0.71 NA) [102],

computer-controlled illumination-side liquid crystal polarizers, and tiltable light sheets—see

Fig. 6.1. We were motivated to pursue spatio-angular microscopy with this dual view design

because of its potential to image with nearly isotropic spatial and angular resolution.

We start by considering an arbitrary three-dimensional angular Boltzmann density f̄(ro, ŝo)

∈ L2(R3 × S2). Notice that we are explicitly considering thick objects by using a three-

dimensional coordinate ro instead of restricting ourselves to thin objects by using a two-

dimensional coordinate r⊥o . Light-sheet imaging systems illuminate the object with a sheet

of light, collect a two-dimensional image, then scan the sheet or the object to build a three-

dimensional dataset that we can index with a three-dimensional coordinate rd. Similar to
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Figure 6.1: A dual-view light sheet microscope with asymmetric detection objectives (1.1
and 0.71 NA), computer-controlled illumination-side liquid crystal polarizers, and tiltable
light sheets. a) Overview of the microscope with liquid crystal polarizers highlighted in red.
b) A zoomed region near the sample highlights the asymmetric NA objectives. c) Excitation
from the low-NA objective along the dark-blue axis—a polarized Gaussian beam is scanned
through the sample to create a light sheet. The polarization and tilt angle of the light sheet
are computer controlled. d) Excitation from the high-NA objective is controlled with the
same degrees of freedom as the low-NA objective.

our work in chapter 5, we index sequential measurements of the object under different illu-

mination polarizations with a discrete index j. Finally, we measure the same object under

two orthogonal illumination/viewing directions, which we index with a new discrete index v.

Therefore, our complete dataset takes the form gjv(rd) ∈ L2(R3)P where P is the total

number of illumination polarizations.

Notice that we have written the discrete indices j and v side by side instead of separated

by a comma to indicate that they are paired in the same way that the spherical harmonic
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indices ` and m are paired. For example, consider the case where we illuminate with three

polarizations for the first view and two polarizations for the second view. Symbolically it is

most convenient to keep track of both the polarization and view indices, but in a computer

program it is most convenient to collapse these indices into a single index that ranges from

one to five.

In section 5.1 we showed that the angular Boltzmann density is linearly related to the

measured data under a specific set of conditions. We assume that these conditions hold so

that the relationship between the object and the data takes the form

gjv(rd) =
∫
S2
dŝo

∫
R3
dro h

(di)
jv (rd, ro, ŝo)f̄(ro, ŝo), (6.1)

where h(di)jv (rd, ro, ŝo) is the generalized point-response function for the polarized diSPIM.

This point-response function can be factored into the product of excitation and detection

point-response functions

h
(di)
jv (rd, ro, ŝo) = h

(di,exc)
jv (rd, ro, ŝo)h

(di,det)
v (rd − ro, ŝo), (6.2)

where we have assumed (1) that the detection point-response function is independent of the

excitation polarization by dropping the j-dependence of h(di,det) (polarized detection can be

modeled by retaining the j-dependence), and (2) that the detection point-response function

is shift invariant in three dimensions.

At this stage is it useful to choose a coordinate system and introduce a pair of rotation

matrices that describe the relative orientations of each view. We choose the +ẑ and +x̂

directions to be aligned with detection optical axes for view 0 and view 1, respectively, in

the direction of light travel for detected light. With this choice we can relate the two views
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Figure 6.2: Dual-view light sheet microscope coordinates.

with the rotation matrices

R0 =


1 0 0
0 1 0
0 0 1

 , R1 =


0 0 1
0 −1 0
1 0 0

 , (6.3)

as shown in Fig. 6.2. We choose R0 to be the identity matrix so that all of our coordinates

are aligned with view 0. The rotation matrix for R1 swaps the x̂ and ẑ axes and inverts the

ŷ axis (equivalently, R1 rotates by π about the x̂+ ẑ axis). Notice that the rotation matrices

Rv have positive determinant det Rv = +1, so they are members of SO(3). Additionally,

we have made a special choice for our coordinate system so that the rotation matrices

are involutory—they are their own inverse R−1
v = Rv. This choice is convenient because

implementations do not have to keep track of both Rv and R−1
v , but other coordinate choices

without this property are possible. We will keep track of both Rv and R−1
v in this chapter

for clarity.

Now we can calculate the polarized diSPIM excitation point-response function explicitly.

If the illumination light sheet is created by focusing a collimated Gaussian beam either (a)

in one dimension (e.g. with a cylindrical lens) or (b) in two dimensions and scanning the

beam rapidly compared to the exposure time, then the excitation point-response function
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can be modeled as

h
(di,exc)
jv (rd, ro, ŝo) =

 w0
w
(
R−1

v rd · x̂
)
2

exp

−2
(
R−1

v (rd − ro) · ẑ
)2

w
(
R−1

v rd · x̂
)2

h(exc)(p̂jv, ŝo), (6.4)

where w0 is the beam waist radius, w(x) = w0
√

1 + (x/xR)2 is the depth-dependent beam

radius, xR = πw2
0n0/λ is the Rayleigh range, and h(exc)(p̂jv, ŝo) is the excitation point-

response function we analyzed in chapter 5 given by

h(exc)(p̂jv, ŝo) = 3√
4π

(
p̂jv · ŝo

)2
. (6.5)

The numerator in the exponential in Eq. (6.4) models the Gaussian profile of the light

sheet along the detection optical axis, while the denominator in the exponential models the

varying beam radius along the illumination optical axis. Gaussian beams are paraxial, so it

is appropriate to model the light-sheet with a constant polarization.

To model the diSPIM detection point-response function we can reuse the models we

developed in earlier chapters. Let h(det)(rd − r⊥o , ro , ŝo; NA) be the irradiance measured

at point rd on a two-dimensional detector from a point source at position (r⊥o , ro) with

orientation ŝo and detection numerical aperature NA (see Eq. (5.19), but here we carry the

axial position ro and the numerical aperture NA as parameters). In the diSPIM we collect

a two-dimensional image for each focal position as we scan the focus through the sample (or

scan the sample through the focus) to build up a three-dimensional image. Therefore, the

diSPIM detection point-response function h(di,det) can be written in terms of h(det) as

h
(di,det)
v (r, ŝo) = h(det)

(
R−1

v r−
[
R−1

v r · ẑ
]
ẑ,R−1

v r · ẑ,R−1
v ŝo; NAv

)
, (6.6)

where the first argument on the right-hand side R−1
v r−

[
R−1

v r · ẑ
]
ẑ is a view-independent

transverse coordinate, the second argument on the right-hand side R−1
v r · ẑ is a view-
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independent axial coordinate, the third argument R−1
v ŝo is a view-independent angular

coordinate, and

NAv =


1.1 for v = 0,

0.71 for v = 1.
(6.7)

Comparing Eqs. (6.4) and (6.6) shows that we do not rotate the argument ŝo in Eq. (6.4)

while we do rotate the argument R−1
v ŝo in Eq. (6.6). Our choice to omit the rotation in Eq.

(6.4) is only for convenience—we could choose to rotate both arguments p̂jv and ŝo and get

the same results since the dot product in Eq. (6.5) is unchanged by rotations. This choice

will be most convenient when we compare different polarization sampling schemes {p̂jv} in

the next section. Notice that we cannot drop the rotations in Eq. (6.6) because h(det) is not

rotation invariant.

We have assembled a complete model of the polarized diSPIM in Eqs. (6.2), (6.4), and

(6.6), but this model is computationally expensive because it is only laterally shift invari-

ant for each view. Fortunately, we can make reasonable approximations and find a three-

dimensionally shift-invariant model that captures the most important features of the imaging

system.

First, we assume that the illumination light sheet does not broaden appreciably along its

propagation direction so that w(z) ≈ w0. Under this assumption we can approximate Eq.

(6.4) with a shift-invariant version where r = rd − ro

h
(di,exc)
jv (r, ŝo)

(unif)= exp
[
−2
(
R−1

v r · ẑ/w0
)2]

h(exc)(p̂jv, ŝo). (6.8)

This assumption is always valid within a Rayleigh range of the beam focus, so we restrict

our attention to this region. Now we can write the complete transfer function under the
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uniform-sheet approximation as

h
(di)
jv (r, ŝo)

(unif)= exp
[
−2
(
R−1

v r · ẑ/w0
)2]

h(exc)(p̂jv, ŝo) (6.9)

h(det)
(
R−1

v r−
[
R−1

v r · ẑ
]
ẑ,R−1

v r · ẑ,R−1
v ŝo; NAv

)
.

Next, we assume that the detection point-response function does not vary appreciably

across the thickness of the light sheet. To estimate the validity of this assumption, we can

compare the depth of focus of the detection arm D = λn0/NA2 to the light-sheet thickness

w0. In our asymmetric NA instrument, the depth of focus will be smallest for the high-NA

view—for NA = 1.1, λ = 500 nm, n0 = 1.3 we have a 0.54 µm depth of focus. Therefore, we

choose illumination beam waists w0 that are on the order of 0.54 µm so that the detection

point response function can be evaluated at R−1
v r· ẑ = 0, which gives the approximate model

h
(di)
jv (r, ŝo)

(unif)=
(thin)

exp
[
−2
(
R−1

v r · ẑ/w0
)2]

h(exc)(p̂jv, ŝo)× (6.10)

h(det)
(
R−1

v r−
[
R−1

v r · ẑ
]
ẑ, 0,R−1

v ŝo; NAv
)
.

We have already computed the single-view excitation and detection transfer functions,

so calculating the transfer functions for the polarized diSPIM is relatively straightforward.

We define a diSPIM Hilbert-space operator H(di) with entries

(
ê(rd)êjv,H(di)ê(ro)ê(̂so)

)
= h

(di)
jv (rd − ro, ŝo), (6.11)

then we change to an object-space basis of spherical harmonics with a spherical Fourier

transform (see Eq. (5.74) for a detailed calculation)

(
ê(rd)êjv,H(di)ê(ro)Ê`m

)
= H

(di)
jv,`m(rd − ro), (6.12)
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where

H
(di)
jv,`m(r)(unif)=

(thin)
exp

[
−2
(
R−1

v r · ẑ/w0
)2]∑

`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
`′m′ (p̂jv)× (6.13)

∫
S2
dŝo h(det)

(
R−1

v r−
[
R−1

v r · ẑ
]
ẑ, 0,R−1

v ŝo; NAv
)
Y`′′m′′ (̂so).

Earlier we evaluated the spherical Fourier transform of h(det), but the second line of

Eq. (6.13) requires us to calculate the same transform in rotated angular coordinates. We

briefly digress to show how this calculation can be completed efficiently using the Wigner

D-matrices. Suppose we have a spherical function f (̂s) and its spherical Fourier transform

F`m =
∫
S2
dŝ f (̂s)Y`m(̂s). (6.14)

The spherical Fourier transform of same function in rotated coordinates is given by

F ′`′m′ =
∫
S2
dŝ f(R−1ŝ)Y`′m′ (̂s), (6.15)

where R ∈ SO(3) is a rotation matrix. After making a change of coordinates R−1ŝ→ ŝ

F ′`′m′ =
∫
S2
dŝ f (̂s)Y`′m′(Rŝ), (6.16)

we expand f (̂s) into a spherical-harmonic series

F ′`′m′ =
∫
S2
dŝ

 ∞∑
`=0

∑̀
m=−`

F`mY`m(̂s)
Y`′m′(Rŝ), (6.17)

then rearrange to find

F ′`′m′ =
∞∑
`=0

∑̀
m=−`

[∫
S2
dŝY`m(̂s)Y`′m′(Rŝ)

]
F`m. (6.18)
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The integral in square brackets is only non-zero when ` = `′, so we perform the sum over `

and give the integral its own symbol

F ′`m′ =
∑̀

m=−`
∆`
mm′(R)F`m, (6.19)

where

∆`
mm′(R) =

∫
S2
dŝY`m(̂s)Y`m′(Rŝ) (6.20)

are the real Wigner D-matrices—see the appendix in Kautz et al. for a similar result [209].

The Wigner D-matrices are square (2` + 1) × (2` + 1) matrices for each rotation R and

band `, and these matrices can be used to calculate the spherical harmonic coefficients of a

rotated function. Notice that rotations only change the spherical harmonic coefficients within

each band since each band of spherical harmonics spans an (2`+ 1)-dimensional rotationally

invariant subspace of L2(S2).

We can use Eq. (6.19) to simplify the result in Eq. (6.13) to

H
(di)
jv,`m(r)(unif)=

(thin)
exp

[
−2
(
R−1

v r · ẑ/w0
)2]∑

`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
`′m′ (p̂jv)× (6.21)

`′′∑
m′′′=`′′

∆`′′
m′′′m′′(Rv)H(det)

`′′m′′′
(
R−1

v r−
[
R−1

v r · ẑ
]
ẑ, 0;NAv

)
.

Calculating ∆`
mm′(R) efficiently for arbitrary R, `,m, andm′ is challenging—see Pinchon

and Hoggan for one approach [210]. Fortunately, we only have two rotation matrices Rv,

and H(det) is only non-zero for ` = 0 and ` = 2 terms. This means we only need to calculate

2(12 + 52) = 52 integrals, which is feasible symbolically. Most of these integrals are trivial

and can be calculated by hand

∆0
00(Rv) = 1, ∆2

mm′(R0) = δmm′ . (6.22)
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The remaining integrals can be evaluated with a computer algebra package, and we write

the values ∆2
mm′(R1) in matrix notation as

∆2(R1) =



0 −1 0 0 0
−1 0 0 0 0
0 0 −1/2 0

√
3/2

0 0 0 1 0
0 0

√
3/2 0 1/2


. (6.23)

As expected this matrix is involutary [∆2(R1)]−1 = ∆2(R1).

Finally, we change to an object- and data-space basis of complex exponentials with a

three-dimensional Fourier transform

(
Ê(vd)êjv,H(di)Ê(vo)Ê`m

)
= H(di)

jv,`m(vd)δ(vd − vo), (6.24)

where

H(di)
jv,`m(v)(unif)=

(thin)

exp
[
−
(
w0R−1

v v · ẑ
)2
/2
]

√
π/2/w0

∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
`′m′ (p̂jv)× (6.25)

`′′∑
m′′′=`′′

∆`′′
m′′′m′′(Rv)H(det)

`′′m′′′
(
R−1

v v−
[
R−1

v v · ẑ
]
ẑ, 0;NAv

)
,

where v ∈ R3 indexes three-dimensional spatial frequencies. Equation (6.25) is the key

result of this section—it gives us an efficient way to calculate the spatio-angular transfer

function of the polarized diSPIM in terms of the transfer functions we calculated in chapter

5. From our previous work we know that the excitation and detection transfer functions are

only non-zero for ` = 0, 2, so the complete transfer function is only non-zero for ` = 0, 2, 4,

which is at most 15 non-zero angular terms.
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6.2 Singular value decomposition

Next, we find the SVD of H(di) by building on our work in section 5.3 and solving the

eigenvalue problem

[H(di)]†H(di)u(di)
p,k = µ

(di)
p,k u(di)

p,k , (6.26)

where p ∈ R3 is a continuous index and k is a discrete index. Choosing a basis for the

object-space singular functions and exploiting the three-dimensional shift invariance yields

(
ê(ro)Ê`m,u

(di)
p,k

)
= Ũk;`m(p) exp[2πip · ro]. (6.27)

Next, we write the entries of the adjoint operator as

(
ê(ro)Ê`m, [H(di)]†ê(rd)êjv

)
= H

(di)∗
jv,`m(rd − ro). (6.28)

Now we can calculate the entries of [H(di)]†H(di) as

(
ê(ro)Ê`m, [H(di)]†H(di)ê(r′o)Ê`′m′

)
≡ p

(di)
`m,`′m′(ro − r′o) (6.29)

=
∑
jv

∫
R3
drdH

(di)∗
jv,`m(rd − ro)H

(di)
jv,`′m′(rd − r′o).

Writing the eigenvalue problem in a specific basis yields

(
ê(ro)Ê`m, [H(di)]†H(di)u(di)

p,k

)
= µ

(di)
p,k Ũ

(di)
k;`m(p) exp[2πip · ro], (6.30)

and rewriting the left-hand side in terms of known transfer functions yields

(
ê(ro)Ê`m, [H(di)]†H(di)u(di)

p,k

)
=
∑
`′m′

∫
R3

dr′o p
(di)
`m,`′m′(ro−r

′
o)Ũ

(di)
k;`′m′(r

′
o)exp[2πip · r′o]
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= exp[2πip · ro]
∑
`′m′

P
(di)
`m,`′m′(p)Ũ (di)

k;`′m′(p) (6.31)

= exp[2πip · ro]
∑
`′m′

∑
j

H(di)∗
jv,`m(p)H(di)

jv,`′m′(p)Ũ (di)
k;`′m′(p),

where we have used the following calculation

P
(di)
`m,`′m′(p) =

∫
R3
dr p

(di)
`m,`′m′(r) exp[−2πp · r] =

∑
jv

H(di)∗
jv,`m(p)H(di)

jv,`′m′(p). (6.32)

Equating the right-hand sides of Eqs. (6.30) and (6.31) yields

∑
`′m′

∑
jv

H(di)∗
jv,`m(p)H(di)

jv,`′m′(p)
 Ũ (di)

k;`′m′(p) = µ
(di)
p,k Ũ

(di)
k;`m(p), (6.33)

where the brackets enclose the entries of a 15 × 15 matrix for each p. We can numerically

calculate the 15 eigenvalues µ(di)p,k and 15 × 1 eigenvectors Ũ (di)
k;`m(p) of each 15 × 15 matrix

then use the results to calculate the complete object-space singular functions in the standard

basis

u
(di)
p,k (ro, ŝo) = exp[2πip · ro]

∑
`m

Ũ
(di)
k;`m(p)Y`m(̂so). (6.34)

Finally, the data-space singular functions can be found by calculating P × 1 vectors

Ṽ
(di)
k;jv(p) =

√
µ
(di)
p,k

∑
`m

H(di)
jv,`m(p)Ũ (di)

k;`m(p), (6.35)

then multiplying these vectors by complex exponentials

v
(di)
p,k;jv(rd) = Ṽ

(di)
k;jv(p) exp[2πip · rd]. (6.36)

Now that we have calculated the mathematical form of the SVD of H(di) we can use
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the results to compare designs, develop our intuition for the limits of the imaging system,

and perform reconstructions. In the next section we compare polarization samples using a

simplified version of the complete SVD, then we use the complete SVD to develop a recon-

struction algorithm that is similar to our earlier two-dimensional reconstruction algorithm.

Finally, we apply the reconstruction algorithm to real data collected with the instrument.

6.3 Optimal polarization sampling

Our goal is to choose a set of illumination polarizations {p̂jv} ∈ (S2)P—P points on the

sphere—that allow us to estimate a useful and easily interpreted set of object parameters.

One set of parameters we would like to estimate is the spherical harmonic coefficients for the

` = 0 and ` = 2 bands. In section 5.3.3 we showed that these parameters are estimable from

six polarization measurements. Furthermore, these functions span a rotationally invariant

subspace of L2(S2), so the reconstructions will be much easier to interpret than rotationally

variant subsets of these functions.

If we were free to place our polarization samples anywhere on the sphere we would place

them at the vertices of an icosahedron. Unfortunately, the nominal diSPIM illumination

geometry constrains us to placing the polarizations on two great circles perpendicular to

the illumination optical axes. Mathematically, we are limited to choosing polarizations that

satisfy

p̂jv ·Rvx̂ = 0. (6.37)

In Section 5.3.3 we found that instruments with polarization samples on two great circles

will be at most rank five, which means that the nominal diSPIM instrument cannot estimate

the coefficients of angular fluorophore distributions in the six-dimensional ` = 0 and ` = 2

rotationally invariant subspaces.
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To overcome this limitation we augmented the instrument with computer-controlled mir-

rors so that the propagation direction of the illumination light sheet was no longer constrained

to a single axis. In principle we could tilt the illumination light sheet in any orientation,

but most tilting orientations would move parts of light sheet out of the focal plane of the

detection objective. Therefore, we tilted the illumination light sheet about the light sheet

plane’s normal axis. For example, we tilted the [x̂-ŷ] plane light-sheet about the ẑ axis

so that the [x̂-ŷ] plane is still illuminated and new polarization orientations are accessible.

After implementing light-sheet tilting, the polarization samples need to satisfy the looser

constraint

p̂jv ·RvRẑ(φ)x̂ = 0, (6.38)

where Rẑ(φ) denotes a rotation about the ẑ axis by angle φ with entries

Rẑ(φ) =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (6.39)

We implemented practical tilt angles that satisfied |φ| . 15◦, a limit set by aberrations,

which is more than enough to access illumination polarizations that will make the operator

rank six. Notice that our tilting scheme does not change the spatial illumination pattern

when light-sheet broadening is negligible, so all of the models we have developed still apply

to the augmented instrument.

Next, we need to choose a reasonable definition for an optimal polarization scheme. One

possible approach is to choose polarization samples {p̂jv} that optimize the Schatten 2-norm
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of the imaging operator

∣∣∣∣∣∣H(di)
{p̂jv}

∣∣∣∣∣∣2 =
∑

k

∫
R3
dpµp,k

(
H(di)
{p̂jv}

)1
2
, (6.40)

where H(di)
{p̂jv} denotes the diSPIM imaging operator with illumination polarizations {p̂jv},

and µp,k
(
H(di)
{p̂jv}

)
denotes the eigenvalues of

[
H(di)
{p̂jv}

]†
H(di)
{p̂jv}. Unfortunately, this is not

a computationally feasible approach because evaluating the Schatten 2-norm requires us to

calculate the singular spectrum for each sampling scheme. To calculate the singular spectrum

for an ROI with 1000× 1000× 1000 spatial points, we would need to compute the singular

values of 109 matrices with 15× 15 entries each, which requires ∼ 1 minute of computation

time on a four-core machine. Performing a reasonably dense search over the sampling scheme

space (placing P points on the sphere) would require a parallel implementation and patience.

To reduce the computational burden we restrict our attention to flat-field objects (objects

with zero spatial frequency v = 0). We define a flat-field operator H(di,flat)
{p̂jv} : L2(S2)→ RP

that maps flat-field objects to flat-field data, then we optimize its spectrum. With Eq. (6.25)

in view, the entries of this new operator are given by

(
êjv,H

(di,flat)
{p̂jv} Ê`m

)
= H(di)

jv,`m(0) (6.41)

=
∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
`′m′ (p̂jv)

`′′∑
m′′′=`′′

∆`′′
m′′′m′′(Rv)H(det)

`′′m′′′ (0, 0;NAv) .

Although the spatio-angular detection transfer function H(det)
`m (ν, 0;NAv) cannot be eval-

uated in closed form for arbitrary transverse spatial frequencies ν, we can calculate its value

at ν = 0 by calculating the integral

H(det)
`m (0, 0;NAv) =

∫
S2
dŝ Π

(
ŝ · ẑ

cosαv

)
(̂s · ẑ)−1/2

[∫
S2
dŝo [1− (̂s · ŝo)2]Y`m(̂so)

]
, (6.42)
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where NAv = n0 sinαv. Equation (6.42) follows directly from our earlier work by setting

ν = 0 in Eq. (5.28), but a quick reinterpretation is useful. The value of H(det)
`m (0, 0;NA) can

be interpreted as the power collected from a flat-field distribution of fluorophores with an-

gular distribution Y`m(̂so) by an objective with its optical axis aligned with ẑ and numerical

aperture NA. On the right-hand side, we recognize the bracketed integrand term [1− (̂s · ŝo)2]

as the sin2 θ dipole radiation pattern of a dipole oriented parallel to ŝo, and the bracketed

integral as its spherical Fourier transform. The middle term (̂s · ẑ)−1/2 is the apodization

factor for an aplanatic objective, and the left term Π
(

ŝ·ẑ
cosαv

)
is the collection cone of the

objective. We integrate the product of these three terms over the sphere to calculate the to-

tal power collected by the objective. In appendix 6.6 we evaluate this integral in closed form

as

H(det)
`m (0, 0;NAv)= 16

3 π
3/2

[
(1−√cosαv)δ0`−

1
20
√

5
(4 +√cosαv[7−3 cos(2αv)])δ`2δm0

]
.

(6.43)

Now we can use Eqs. (6.43) and (6.41) to efficiently calculate the 15×6 entries of the diSPIM

flat-field operator H(di,flat)
{p̂jv} .

By inspection of Eq. (6.41), we expect the object-space singular functions of the flat-

field operator to be linear combinations of the ` = 0, 2 and 4 spherical harmonics. We are

only interested in ensuring that our polarization sampling scheme can reconstruct the ` = 0

and ` = 2 spherical harmonics, so we introduce an operator that projects general spherical

functions onto this subspace P`=2 : L2(S2)→ L2(S2) with entries

(
Ê`m,P`=2Ê`′m′

)
= δ``′δmm′ for ` ≤ 2. (6.44)

Now we can optimize the combined operator H(di,flat)
{p̂jv} P`=2 that has 6× 6 non-zero entries.

We can say that our sampling scheme can estimate the ` = 0 and ` = 2 spherical harmonics
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if this combined operator is rank six.

We have found two constraints, A and B, on our sampling schemes {p̂jv}: the sam-

pling scheme must give rise to a rank-six operator A =
{
rank

(
H(di,flat)
{p̂jv} P`=2

)
= 6

}
and it

must be achievable in the tilting diSPIM instrument B =
{
p̂jv ·RvRẑ(φ)x̂ = 0

}
. Our only

remaining choice is a function to optimize. The Schatten 2-norm is a natural choice—we

find the sampling scheme that maximizes the root sum of squares of the singular values of

H(di,flat)
{p̂jv} P`=2 subject to the constraints A and B

argmax
{p̂jv}∈A∩B

∣∣∣∣∣∣∣∣H(di,flat)
{p̂jv} P`=2

∣∣∣∣∣∣∣∣2 . (6.45)

Qualitatively, this optimization problem leads to designs that “recover as much as possible

about all six parameters”. Unfortunately, this optimization problem can lead to solutions

that barely meet the rank-six condition—the smallest singular values can be extremely small.

Our goal is to choose a design that measures the six parameters well with none measured

poorly, so the Schatten norm is not a good choice.

To combat this issue we optimized the condition number of the matrix

argmax
{p̂jv}∈A∩B

κ
(
H(di,flat)
{p̂jv} P`=2

)
, (6.46)

where κ(A) = max(µ(A))/min(µ(A)) is the ratio of the maximum and minimum non-zero

singular values of A. Qualitatively, this optimization problem leads to designs that “leave

no parameter behind”. Notice that the condition number is only well-defined for operators

with a discrete spectrum (compact operators) since an operator with a continuous spectrum

does not have a minimum non-zero singular value.

The parameter space in Eq. (6.46) is challenging to search because it is continuous in some

parameters and discrete in others. We cannot take derivatives and find analytic solutions,

so we use a heuristic approach and discretize the continuous parameters. Discretizing the
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search space has the advantage of providing solutions that will be simple to implement

experimentally, but of course discretizing removes any guarantees that our sampling schemes

will be globally optimal. We discretize the tilt angle into three choices φ ∈ {−π/12, 0, π/12}

and the polarizer angle into six choices θ ∈ {0, π/6, π/3, π/2, 2π/3, 5π/6}. This discretization

means that a brute-force search will need to place six sampling points among 2× 3× 6 = 36

possible sampling positions. Each objective function evaluation requires us to calculate a

6×6 matrix and calculate its singular values which requires ∼ 2 ms on a single-core machine.

With these choices, a brute-force search is feasible since
(36

6
)
≈ 2 × 106 objective function

evaluations will take about 2 hours.

Figure 6.3 shows the optimized polarization sampling schemes for diSPIM instruments

with and without light-sheet tilting. Without tilting, the optimal samples use equally spaced

polarization samples with three samples from each illumination direction, and this sampling

scheme is rank 5. With tilting, the optimal samples are asymmetric samples from each

illumination direction, and this sampling scheme is rank 6.

6.4 Reconstruction algorithm

We can adapt the reconstruction algorithm presented in section 5.5 to reconstruct the spatio-

angular Boltzmann distribution from measurements collected with the polarized diSPIM.

First, we calculate the diSPIM spatio-angular transfer function H(di)
jv,`m(v) using Eq. (6.25),

and we treat this transfer function as a 6 × 15 matrix at each three-dimensional spatial

frequency. Next, we calculate and store the singular system of each 6 × 15 matrix, which

results in a set of object-space singular functions Ũ (di)
k;`m(p), data-space singular functions

Ũ
(di)
k;`m(p), and singular values µ(di)p,k . If the complete singular system can be stored in memory,

then that is the most efficient option. However, in practical datasets the number of spatial

frequencies can approach 109, which means that we would need to precompute [6(15)+6(6)+

6]× 109 ≈ 500GB of data then load this data into memory to perform reconstructions.
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Figure 6.3: Optimized polarization samples for the diSPIM instrument with and without
illumination tilting. Each point on the sphere represents a possible illumination optical axis,
and the pair of circles enclose the detection numerical apertures (with two detection arms
centered on the x̂ and ẑ axes). One polarization sample is specified by its illumination optical
axis (represented by a point on the sphere) and its polarization orientation (represented by
an arrow perpendicular to the illumination optical axis). The arrow colors do not encode
any necessary information—they serve as an easy referencing scheme. Left: The optimal
polarization samples for the diSPIM without tilting are three equally spaced polarization
orientations for each illumination axis (three red arrows for one view and three green arrows
for the other view). Right: When we allow illumination axis tilting about the detection
optical axis, we reoptimize the polarization samples and find an asymmetric sampling scheme.
From the first view we tilt the illumination axis and collect three equally spaced polarization
samples (blue arrows). From the other view, we orient the polarizer in the direction of the
first illumination axis then collect two samples under both illumination tilting orientations
(red arrows). Finally, we rotate the polarizer by π/3, illuminate from the nominal axis, and
collect the sixth sample (green arrow).
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To ease this burden we can exploit the properties of the transfer function to compute and

store a small number of values that can be combined to generate all of the entries H(di)
jv,`m(v).

Equation (6.25) shows a natural way to decompose the complete transfer function into three

parts—an spatial excitation part, an angular excitation part, and a detection part—and

each of these can be precalculated, stored, and combined efficiently using the real Gaunt

coefficients and real Wigner D-matrices. At reconstruction time we can compute the complete

transfer function at a given spatial frequency, compute its singular value decomposition,

perform the reconstruction for that spatial frequency, then move on to the next spatial

frequency. This approach delays a large fraction of the computations until reconstruction

time, but it relieves the burden of having to store and manipulate 500 GB datasets.

With the singular system of the imaging system in hand, we can proceed directly to the

reconstruction. We start by taking the three-dimensional Fourier transform of the data

Gjv(v) =
∫
R3
drd gjv(rd) exp[−2πird · v]. (6.47)

Next, we apply a Tikhonov-regularized pseudoinverse using our stored singular system

ˆ̄Fη;`m(v) =
6∑

k=1

√
µv,k

µv + η
Ũ
(di)
k;`m(v)

∑
jv
Ṽ
(di)
k;jv(v)Gjv(v). (6.48)

Finally, we take an inverse three-dimensional Fourier transform

ˆ̄Fη;`m(ro) =
∫
R3
dv ˆ̄Fη;`m(v) exp[2πiro · v], (6.49)

and store the result until we are ready to visualize with the algorithms we developed in

section 5.5.
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6.5 Reconstructions and discussion

To test our instrument, reconstruction algorithm, and polarization sampling schemes, we

imaged two samples with known relationships between the position and the orientation of

the fluorescent molecules.

First, we prepared giant unilamellar vesicles (GUVs) via electroformation [211, 212],

labeled the vesicles with di-8-ANEPPS (a membrane-crossing dye with a dipole transition

moment oriented normal to the membrane [213]), then fixed the vesicles to a coverslip coated

with cationic BSA. We imaged the GUVs with the polarized diSPIM under 42 illumination

polarizations that included illumination tilting, then we used the reconstruction algorithm

described in section 6.4 to recover the spherical harmonics coefficients at each spatial po-

sition. We performed reconstructions using two subsets of the 42-polarization dataset that

correspond to sampling schemes described in Fig. 6.3—optimized samples with and without

illumination tilting.

Figure 6.4 visualizes our reconstruction from six optimal tilting polarization samples. We

expect a perfect imaging system to reconstruct a sphere with tightly peaked ODFs on the

sphere’s surface, peak orientation cylinders oriented normal to the sphere, and a uniform

density on the sphere’s surface. Our reconstruction matches most of these expectations: we

reconstruct ODFs that cover the sphere’s surface with peak orientations that are normal

to the sphere everywhere except near the two detection optical axes. We also observe that

the fluorescence density is uniform on the surface of the sphere within ≈ 50%—we observe

the highest reconstructed fluorescence densities on the regions of the sphere perpendicular

to the detection optical axes. Both of these artefacts can be attributed to the null space

of the imaging system. The poor angular reconstructions near the viewing directions can

be directly attributed to the relatively small tilting angles available in the diSPIM—we

would not expect these kinds of artefacts from an ideal icosahedral sampling scheme. The

nonuniform density can also be attributed to the relatively small tilting angles—we collect
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the largest signals from dipoles oriented perpendicular to the viewing axes, so other directions

are more susceptible to corruption by noise.

Figure 6.5 shows a sliced visualization of peak orientations from the same GUV sample

that compares reconstructions with and without illumination tilting. We see clear evidence

that illumination polarization tilting improves the reconstructions in the regions that bisect

the detection optical axes. We also observe that all orientations are reconstructed accurately

except for orientations near the detection optical axes.

We investigated the limitations of our imaging system and reconstruction scheme by

comparing our experimental GUV results with simulations. Figure 6.6 shows (A) a numerical

GUV phantom alongside (B) the experimental data and its reconstruction. We generated a

numerical phantom that matched our expectation for the object that we imaged—a 6 µm

diameter spherical shell with dipole moments oriented normal to the surface of the sphere.

We simulated the numerical phantom using a continuous mathematical phantom

f (guv)(ro, ŝo) = Π
(
|ro| − rc

t

) ∣∣∣∣∣ ŝo · ro|ro|

∣∣∣∣∣
4
, (6.50)

where rc = 3µm is the radius of the spherical shell and t = 500 nm is the thickness of the

spherical shell. We discretized the continuous phantom onto a 130 nm3 cubic voxel grid and

plotted the result in subfigure (A, a). Notice that the density is uniform along all three

circumference profiles shown in subfigure (A, a, iv). Next, we simulated noise-free data

with a light-sheet tilting sampling scheme (A, b), reconstructed the object using a small

regularization parameter (A, c), then simulated the data generated by the reconstructed

phantom (A, d). Comparing the first simulated dataset (A, b) to the second simulated

dataset (A, d) voxelwise showed a maximum 2% difference, which can be attributed to the

regularization applied during the reconstruction. Performing an identical comparison with

an unregularized reconstruction (not shown in the figure) resulted in a maximum difference

of 10−5%, which can be attributed to floating point error. The reconstructed density profiles
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(A, c, iv) are even along all three directions, which indicates the antipodal symmetry (or

centrosymmetry) of the phantom and the reconstructions. The reconstructed density profiles

fall as low as 60% of the maximum density.

In Fig. 6.6 (B) we show the data we collected, the regularized reconstruction, and the

resimulated data for direct comparison with the phantom in Fig. 6.6 (A). The data in subfig-

ures (b, i–iv) show strong qualitative agreement between simulation and experiment, while

the data in subfigures (b, v–vi) do not agree as clearly—we hypothesize a calibration or

model mismatch error. The reconstructions in subfigures (c) match qualitatively (orien-

tations match, tilting fixes angular degeneracy) and show reasonable numerical agreement

between the density profiles. Specifically, the red and green profiles in subfigures (c, iv) cor-

responding to the profiles perpendicular to the viewing directions match well including a

density drop down to 50% of the maximum. The blue profiles in subfigures (c, iv) match

poorly—we hypothesize that this mismatch is due to a combination of the coverslip (which

we did not simulate) and increased sample motion for points on the GUV far from the

coverslip.

We also investigated the limitations of our sampling schemes by simulating data and

reconstructions from experimental sampling schemes and potential future sampling schemes.

The first and second rows of Fig. 6.7 show data and reconstructions from sampling schemes

that we used to collect experimental data—a no-tilt sampling scheme and the optimal tilting

sampling scheme detailed in Fig. 6.3—while the third and fourth rows show two potential

future schemes—a six-illumination icosahedral scheme and a 16-sample scheme at Fibonacci

lattice points (see Eq. (5.104)).

The first and second rows of Fig. 6.7 share many features with our experimental recon-

struction in Figs. 6.4 and 6.5. First, we can clearly see that dipoles in the plane of the

optical axes are not reconstructed accurately—this can be seen most clearly in the red peaks

in subfigure (A, ii) of Fig. 6.7. Second, we see that using light-sheet tilting fixes the issue—
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subfigure (B, ii) of Fig. 6.7 no longer shows a red band of peaks in the plane of the optical

axes. Third, our simulation shares several limitations with our real reconstructions—the flu-

orophore density is underestimated near the optical axes and overestimated in the direction

perpendicular to these axes. Additionally, the orientation of dipoles near the optical axes

are estimated imperfectly.

We numerically tested two additional sampling schemes—a six-illumination icosahedral

sampling scheme (see Fig. 5.3) where each view sampled three illumination polarizations,

and a sixteen-illumination Fibonacci sampling scheme. Both sampling schemes resulted

in good orientation reconstructions along all orientations including near the optical axes,

and both sampling schemes reduced the density bias (70% and 85% minimum density for

icosahedral and Fibonacci samples, respectively). We consider improved multiview designs

that can estimate the density of fluorescent molecules without bias at the same time as their

orientation as important future work.

We also investigated the effect of regularization in our reconstruction by plotting numer-

ical reconstructions from the GUV phantom using sampling with light-sheet tilting. Fig-

ure 6.8 shows how increasing the regularization parameter smooths the reconstruction both

spatially and angularly. There are two useful ways to interpret these plots. First, they can

be used to spot overregularization artefacts—choosing a regularization parameter that is too

large will result in a reconstruction with orientations along the ŷ axis (plotted with green

peaks). Second, these plots can be used to understand the effect of noise on the recon-

struction. Low SNR data will require larger regularization parameters, which will result in

orientation estimates that are biased towards the ŷ axis. These results show that if noise is

eliminated, then the tilting sampling scheme is sufficient to recover a uniform density on the

sphere. Therefore, the fact that the dual-view imaging system cannot estimate densities for

all orientations is due to both noise and instrumental limitations. We can summarize these

findings in a mathematical way by saying that the singular value spectrum is non-uniform,
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so we lose some spatio-angular components to noise before others.

Next, we prepared U2OS cells labeled with Alexa Fluor 488 phalloidin—an actin-binding

fluorophore with transition dipole moments that align parallel to the long axis of actin fibers

[67]. Figure 6.9 shows a visualization of our reconstruction that shows evidence that we can

reconstruct the three-dimensional orientation of fluorescent molecules in three-dimensional

biological structures.

Taken together, these data and simulations show that a dual-view polarized light-sheet

microscope with tilting illumination can recover the three-dimensional position and orien-

tation of fluorescent molecules. We have clear evidence that our models, reconstruction

schemes, and visualization tools yield results that match our expectations. Furthermore,

comparing our reconstructions with and without light-sheet tilting supports the validity

of our models and their ability to make useful predictions that can improve the design of

spatio-angular instruments.
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Figure 6.4: A three-dimensional spatio-angular reconstruction of a GUV measured with six
optimal tilting polarization samples. Each row shows a rendering from a different viewing
direction of the same reconstruction, and each column shows a different way to visualize the
reconstruction. The left column visualizes the orientation distribution functions (ODFs), the
center column visualizes the peak orientations (where most fluorophores are oriented at each
position), and the right column shows a maximum intensity projection of the spatial density
of fluorophores. See Fig. 5.6 for more details about these visualizations. The pair of black
(white) lines in the first and second (third) columns indicate the detection optical axes of
the instrument, and the interior bisector of these lines is normal to the coverslip (a visible
plane at the bottom of each viewing direction). The diameter of the GUV is 6.1 µm.
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Figure 6.7: A simulated GUV with four simulated reconstructions under different sampling
conditions—(A) six tilt-free samples, (B) six tilting samples, (C) six icosahedral samples, and
(D) 16 Fibonacci samples. Each reconstruction was performed with regularization η = 0.01.
Adding tilting fixes angular degeneracy (see incorrect red peaks in (A, ii)), increasing the
tilting angle to access icosahedral sampling improves the density uniformity (see 70% mini-
mum density in (C, iv)), and increasing the number of samples further improves the density
uniformity (see 85% minimum density in (D, iv)).

200



Fi
gu

re
6.
8:

R
eg
ul
ar
iz
at
io
n
st
ud

y
of

G
U
V

re
co
ns
tr
uc
tio

ns
w
ith

til
te
d
lig

ht
-s
he
et

sa
m
pl
in
g.

Ea
ch

ro
w

sh
ow

sa
re
co
ns
tr
uc
tio

n
fro

m
a
nu

m
er
ic
al

ph
an

to
m

w
ith

in
cr
ea
sin

g
re
gu

la
riz

at
io
n
fro

m
le
ft
to

rig
ht

(A
)η

=
0,

(B
)η

=
0.
01
,a

nd
(C

)η
=

0.
1.

In
cr
ea
sin

g
th
e
re
gu

la
riz

at
io
n
re
su
lts

in
sp
at
ia
lly

an
d
an

gu
la
rly

sm
oo

th
ed

re
co
ns
tr
uc
tio

ns
.
T
he

hi
gh

-fr
eq
ue
nc
y
sp
at
ia
lc

om
po

ne
nt
s
in

th
e
un

re
gu

la
riz

ed
de
ns
ity

im
ag
e
ar
e
an

al
ia
sin

g
ar
te
fa
ct

of
re
co
ns
tr
uc
tin

g
on

to
a
vo
xe
lg

rid
w
ith

sh
ar
p
ed
ge
s.

201



Fi
gu

re
6.
9:

A
th
re
e-
di
m
en
sio

na
ls
pa

tio
-a
ng

ul
ar

re
co
ns
tr
uc
tio

n
of

U
2O

S
ce
lls

la
be

le
d
w
ith

A
le
xa

Fl
uo

r
48
8
ph

al
lo
id
in
.
Ea

ch
ro
w

sh
ow

s
a
re
nd

er
in
g
fro

m
a
di
ffe

re
nt

vi
ew

in
g
di
re
ct
io
n
of

th
e
sa
m
e
re
co
ns
tr
uc
tio

n:
th
e
to
p
ro
w

vi
ew

in
g
di
re
ct
io
n
is

in
th
e
pl
an

e
of

th
e
co
ve
rs
lip

w
ith

th
e
co
ve
rs
lip

no
rm

al
po

in
tin

g
up

,t
he

bo
tt
om

ro
w

vi
ew

in
g
di
re
ct
io
n
is

po
in
tin

g
pa

ra
lle
lt

o
th
e
co
ve
rs
lip

no
rm

al
,a

nd
th
e
m
id
dl
e
ro
w

is
at

45
◦
an

gl
e
be

tw
ee
n
th
es
e
vi
ew

in
g
di
re
ct
io
ns
.
Ea

ch
co
lu
m
n
sh
ow

s
a
di
ffe

re
nt

vi
su
al
iz
at
io
n
of

th
e
re
co
ns
tr
uc
tio

n.
T
he

re
co
ns
tr
uc
tio

n
sh
ow

s
th
re
e-
di
m
en
sio

na
lo

rie
nt
at
io
ns

of
ac
tin

fib
er
s
in

th
e
pl
an

e
of

th
e
co
ve
rs
lip

(o
ra
ng

e
an

d
ye
llo

w
pe

ak
s)

an
d
ou

t
of

th
e
pl
an

e
of

th
e
co
ve
rs
lip

(b
lu
e
pe

ak
s)
.
T
he

m
ax

im
um

di
m
en
sio

n
of

th
e

fie
ld

of
vi
ew

is
12
.2
µ
m
.

202



6.6 Appendix: Flat-field detection transfer function

In this appendix we evaluate the following nested integral which appears in Eq. (6.42)

H(det)
`m (0, 0;NA) =

∫
S2
dŝ Π

(
ŝ · ẑ
cosα

)
(̂s · ẑ)−1/2

[∫
S2
dŝo [1− (̂s · ŝo)2]Y`m(̂so)

]
. (6.51)

Before attacking this calculation, we establish a few useful tools and identities. First, we

consider functions on the unit symmetric interval f(x) ∈ L2([−1, 1]). These functions can

be expanded into a Fourier–Legendre series

f(x) =
∞∑
`=0

F`P`(x), (6.52)

where P`(x) are Legendre polynomials, which span L2([−1, 1]). The Legendre polynomials

satisfy

∫ 1

−1
dxP`(x)P`′(x) = 2

2`+ 1δ``′ , (6.53)

so they are orthogonal but not orthonormal. We can calculate the Fourier–Legendre coeffi-

cients using Fourier’s trick—multiply both sides of Eq. (6.52) by P`(x), integrate over the

interval [−1, 1], then apply the orthogonality relation to find that

F` = 2`+ 1
2

∫ 1

−1
dx f(x)P`(x). (6.54)

We will refer to the coefficients F` as the Fourier–Legendre transform of f(x).

We can use the Fourier–Legendre transform to help calculate the spherical Fourier trans-

form of rotationally symmetric functions that take the form f (̂s · ŝ′) where ŝ′ is a parameter.
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If the spherical Fourier transform takes the form

F`m(̂s′) =
∫
S2
dŝ f (̂s · ŝ′)Y`m(̂s), (6.55)

then we can expand f (̂s · ŝ′) into its Fourier–Legendre series and proceed step by step

F`m(̂s′) =
∫
S2
dŝ

∑
`′
F`′P`′ (̂s · ŝ′)

Ym` (̂s)

=
∑
`′
F`′

∫
S2
dŝP`′ (̂s · ŝ′)Y`m(̂s),

=
∑
`′m′

4π
2`′ + 1F`′Y`′m′ (̂s

′)
∫
S2
dŝY`′m′ (̂s)Y`m(̂s)

=
∑
`′m′

4π
2`′ + 1F`′Y`′m′ (̂s

′)δ``′δmm′

= 4π
2`+ 1Y`m(̂s′)F`

= 2πY`m(̂s′)
∫ 1

−1
dxf(x)P`(x), (6.56)

where we have rearranged the equation, applied the spherical harmonic addition theorem,

used the orthogonality of spherical harmonics, used the discrete sifting theorem, then used

the definition of the Fourier–Legendre transform. Equation (6.56) shows that we can reduce

an infinite set of integrals over the sphere to a single integral over the interval [−1, 1].

We can use Eq. (6.56) to evaluate Eq. (6.51). The inner integral evaluates to

∫
S2
dŝo [1− (̂s · ŝo)2]Y`m(̂so) = 2πY`m(̂s)

∫ 1

−1
dx (1− x2)P`(x)

= 2πY`m(̂s)
[4
3δ0` −

4
15δ`2

]
. (6.57)
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Finally, we apply Eq. (6.56) to the outer integral and complete the calculation

H(det)
`m (0, 0;NA) =

∫
S2
dŝ Π

(
ŝ · ẑ
cosα

)
(̂s · ẑ)−1/2

[
2πY`m(̂s)

[4
3δ0` −

4
15δ`2

]]

= 2π
[4
3δ0` −

4
15δ`2

] ∫
S2
dŝ Π

(
ŝ · ẑ
cosα

)
(̂s · ẑ)−1/2Y`m(̂s)

= 4π2
[4
3δ0` −

4
15δ`2

]
Y`m(ẑ)

∫ 1

cosα
dx x−1/2P`(x) (6.58)

= 4π2
[4
3δ0` −

4
15δ`2

] 1
2
√
π

[
δ`0 +

√
5δ`2δm0

]
×[

(2− 2
√

cosα)δ0` +
(2

5 + 1
10
√

cosα(7− 3 cos(2α)
)
δ2`

]
= 16

3 π
3/2

[
(1−

√
cosα)δ0` −

1
20
√

5
(4 +

√
cosα[7− 3 cos(2α)])δ`2δm0

]
.
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CHAPTER 7

MODELING EMERGING SPATIO-ANGULAR MICROSCOPES

In the study of wisdom, many views and few judgments.
— Joseph Joubert (1815)

Chapters 5 and 6 presented models for a reasonably broad class of spatio-angular fluo-

rescence microscopes—single- and dual-view microscopes with arbitrary numerical apertures

and arbitrary excitation polarization orientations. In chapter 6 we found that a dual-view

microscope could be modeled directly in terms of a model for a single-view microscope by

employing rotation matrices Rv and generalized convolution-multiplication theorems (the

Gaunt coefficients and the Wigner D-matrices). This work gives us hope that we have com-

pleted all of our physical modeling—that arbitrary fluorescence microscopes can be modeled

by simply linearly combining our existing models.

In some cases this hope is warranted. If we add a third (or nth) view to our dual-view

design, we can use reuse all of the models in chapters 5 and 6 with suitable redefinitions

of the rotation matrices Rv. However, not all possible designs can be modeled with linear

combinations of existing models. For example, it is not clear how we should modify or com-

bine our existing point-response functions to account for spatially structured illumination, a

detection-side polarization or pupil splitter, or a detection-side micro-lens array.

The key difference between these cases is coherence. If we make new incoherent measure-

ments of the object (for example, by adding an extra view), then we can linearly combine

the models we have developed to create a new model. However, if we make new coherent

measurements of the object (i.e. we modify electric fields in the instrument), then we need

to develop new models. Recall that we always measure the irradiance (the absolute square

of the electric field), so our linear point-response functions map fluorophore distributions

to irradiance patterns. To model the effects of electric-field modifiers (gratings, polarizers,

phase masks, microlenses), we need to modify the coherent point-response functions, model
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interference effects, then take the absolute square to find the new point-response functions.

In this chapter we will develop forward models for three emerging classes of spatio-

angular microscopes—microscopes with spatio-angular structured illumination; microscopes

with polarization splitters, pupil splitters, or phase masks; and light-field microscopes with

a microlens array in the nominal detector plane. The first two microscopes have the same

symmetries as the microscopes we considered in chapter 6, so their singular systems and

reconstruction schemes have a familiar form. On the other hand, the light-field microscope

has less symmetry than the microscopes we have considered so far, so we calculate the explicit

form of the singular value decomposition and reconstruction scheme. Although we cannot

model every possible microscope design, we have chosen a set of representative microscopes

with models that can be combined or modified to model an extremely large set of possibilities.

We conclude by discussing these possibilities and speculating on optimal designs.

7.1 Spatio-angular structured illumination

First, we consider a model for a microscope with spatially and angularly structured illumi-

nation. We have already modeled microscopes with angularly structured illumination using

polarizers and variable illumination orientations, so we focus on how to extend our models

to include spatially structured illumination in two or three dimensions.

We consider our object to be a three-dimensional angular Boltzmann distribution

f̄(ro, ŝo) ∈ L2(R3 × S2), our data to be a set of J images with each image collected un-

der a different illumination pattern gj(rd) ∈ L2(R2)J , and the linear relationship between

the object and data to be

gj(rd) =
∫
R3
dro

∫
S2
dŝo h

(si)
j (rd, ro, ŝo)f̄(ro, ŝo), (7.1)

where h(si)j (rd, ro, ŝo) is a generalized point-response function, and (si) indicates that this is
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the model for structured illumination. We can decompose this point-response function into

excitation and detection point-response functions

h
(si)
j (rd, ro, ŝo) = h

(si,exc)
j (ro, ŝo)h(det)(rd − r⊥o , ro , ŝo), (7.2)

where h(det)(rd − r⊥o , ro , ŝo) is the usual detection point-response function we considered in

chapters 5 and 6, and h
(si,exc)
j (ro, ŝo) is the excitation point-response function. Compared

to our earlier work, the excitation point response function is now dependent on ro to model

the spatial dependence of excitation.

The typical approach for creating a structured illumination pattern is to interfere several

plane waves in the sample. If we illuminate the sample with N plane waves and the nth

plane wave can be described by its wave vector kn, phase φn, and linear polarization p̂n

(subject to the constraint p̂n · kn = 0), then the electric field pattern in the sample is given

by

E(ro) =
N−1∑
n=0

p̂n exp[i(kn · ro + φn)]. (7.3)

If we illuminate the sample with J different patterns, then we can add an index j to the

illumination electric field and find that the excitation point-response function takes the form

h
(si,exc)
j (ro, ŝo) =

∣∣∣Ej(ro) · ŝo∣∣∣2, (7.4)

which means that the electric fields interfere before exciting the dipoles oriented along direc-

tion ŝo.
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We can build our intuition for spatio-angular structured illumination by adding an index

j to the wave vector, phase, and polarization, then writing the excitation transfer function

as

h
(si,exc)
j (ro, ŝo) =

∣∣∣∣(N−1∑
n=0

p̂jn exp[i(kjn · ro + φjn)]
)
· ŝo

∣∣∣∣2. (7.5)

In this form it is clear that if we illuminate with a single plane wave N = 1, then the

excitation transfer function reduces to the form |p̂j · ŝo|2, which we studied in chapters 5

and 6. Expanding the vectors p̂ and ŝo into their three components (denoted by adding an

index i) yields the form

h
(si,exc)
j (ro, ŝo) =

∣∣∣∣ 2∑
i=0

N−1∑
n=0

pijnsi exp[i(kjn · ro + φjn)]
∣∣∣∣2 (7.6)

=
2∑
i=0

2∑
i′=0

N−1∑
n=0

N−1∑
n′=0

pijnpi′jn′sisi′ exp[i([kjn′ − kjn] · ro + φjn′ − φjn)].

The second row of Eq. (7.6) shows that the differences of wave vectors [kjn′−kjn] appears in

the excitation transfer function, which means that high spatial frequency information can be

aliased into the passband of the detection system. Gustafsson and coworkers have shown that

making careful choices of the wave vectors kjn and phases φjn can lead to an invertible system

of equations that can yield reconstructions with twice the spatial resolution of a diffraction-

limited image [162, 214]. Our work in chapter 6 parallels Gustafsson’s work—we made

careful choices of p̂ to find an invertible system of equations that yielded reconstructions

with rotationally invariant angular resolution.

A microscopist interested in building a spatio-angular structured illumination microscope

is faced with the problem of choosing appropriate wave vectors, phases, and polarizations.

Although we cannot give a solution to this problem at this time, we can make a few comments.

First, only six unique illumination polarization orientations are necessary—more than six
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polarizations might improve robustness to noise but will not make higher angular frequencies

accessible. We expect icosahedral polarization sampling to be optimal, but this remains

unconfirmed.

Second, interfering plane waves with user-controlled polarizations allows for several op-

portunities not afforded to typical spatial structured illumination designs. For example,

illuminating the sample with two coherent plane waves that have different k vectors, orthog-

onal polarizations, and a relative phase of π will result in a spatially structured polarization

pattern with a spatially uniform irradiance, which allows fewer illumination patterns to be

used. Ströhl and Kaminski have proposed these types of illumination patterns for fast vol-

umetric imaging [215], and we speculate that these types of illumination patterns will also

appear in optimal spatio-angular sampling schemes.

Finally, we speculate that formulating the optimization problem in terms of k ∈ S2,

φ ∈ S1, and p̂ ∈ S2 may lead to a more challenging optimization problem than a more

abstract formulation. Two-dimensional Jones vectors J ∈ C2 are a useful way to model

the polarization and phase of a plane wave traveling along a single axis [216, 217], and

recent work has shown that three-dimensional Jones vectors J ∈ C3 (so-called generalized

Jones vectors) can be useful for modeling polarized light propagation in all three dimensions

[218, 219]. Reformulating the sampling problem in terms of three-dimensional Jones vectors

may lead to additional insight.

7.2 Detection-side polarization splitters, pupil splitters,

and phase masks

Next, we model microscopes with polarization splitters, pupil splitters, or phase masks placed

in the back focal plane of the detection objective. As usual, we consider our object to be a

three-dimensional angular Boltzmann distribution f̄(ro, ŝo) ∈ L2(R3×S2). On the detection

side, we collect J ′ images (by imaging with multiple cameras or by subdividing a single cam-
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era) for each of the J illumination patterns, so our data takes the form gjj′(rd) ∈ L2(R2)JJ ′ .

Most splitting schemes will collect the same number of images for each illumination pattern,

but if this is not the case then the pair of indices (j,j′) can be replaced with a single collapsed

index.

The linear relationship between the object and data takes the form

gjj′(rd) =
∫
R3
dro

∫
S2
dŝo h

(spl)
jj′ (rd, ro, ŝo)f̄(ro, ŝo), (7.7)

where h(spl)jj′ (rd, ro, ŝo) is the generalized point-response function, and (spl) indicates that this

is the model for split apertures. We can decompose the generalized point-response function

into excitation and detection point-response functions

h
(spl)
jj′ (rd, ro, ŝo) = h

(exc)
j (ro, ŝo)h

(spl,det)
j′ (rd − r⊥o , ro , ŝo). (7.8)

We have already studied several forms of the excitation point-response function—linearly

polarized plane waves in chapter 5, multiview polarized light sheets in chapter 6, and spatio-

angular structured illumination in the previous section—and these models can be reused

directly. In the rest of this section we will study several possible forms of the split detection

point-response function.

In general, the split detection point-response function can be decomposed as

h
(spl,det)
j′ (rd − r⊥o , ro , ŝo) =

∑
i,i′=0,1,2

Bii′j′(rd − r⊥o , ro)sisi′ (7.9)

where

Bii′j′(r⊥, ro) =
∑
n=0,1

βnij(r⊥, ro)β∗ni′j(r
⊥, ro), (7.10)
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is the irradiance created on the j′th split of the detector at position r⊥ when an sisi′ angular

distribution is placed at defocus position ro ,

βnij′(r⊥, ro) =
∫
R2
dτ Mnj′(τ )A(τ )Φ(τ , ro)gni(τ ) exp[i2πτ · r⊥], (7.11)

is the nth component of the electric field created at position r⊥ on the detector by the ith

component of a dipole, Mnj′(τ ) is a mask function that we will discuss in the remainder of

this section, and A(τ ), Φ(τ , ro), and gni(τ ) are the amplitude, phase, and Green’s tensor

functions we defined earlier in section 5.2.

The mask functionMnj′(τ ) is the key tool for modeling splits in the back aperture of the

detection objective. The value of Mnj′(τ ) is the transmission coefficient (a complex value

with magnitude less than one) of the nth component of the electric field at position τ in

the back aperture plane for the j′th split of the detector. A wide range of polarization and

amplitude splitters can be modeled with real-valued mask functions, and phase masks can

be modeled with complex-valued mask functions. We briefly show how these mask functions

can be used to model existing splitters before we speculate on future designs.

The four-way polarization splitter used in Mehta et al. [67] can be modeled with the

mask function

M
(4pol)
nj′ (τ ) = δn0 cos(j′π/4) + δn1 sin(j′π/4), for j′ = 0, 1, 2, 3. (7.12)

For example, during the j′ = 0 measurement Eq. (7.12) takes the value 1 when n = 0 (for

x̂-oriented fields) and 0 when n = 1 (for ŷ-oriented fields). Notice that τ does not appear

on the right-hand side of Eq. (7.12) because the aperture is clear (we are only splitting

polarizations, not amplitudes).

Pupil splitters are easiest to model when the pupil position vector τ is written in polar

coordinates (τ, φτ ). For example, if the circular pupil is split in half (into two ‘D’s) then
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each of these paths is further split into two orthogonal polarizations [personal communication,

Tomomi Tani], then this mask can be modeled with the function

M
(2pol/2amp)
nj′ (τ, φτ ) =

[
δn0δbj′/2c,0 + δn1δbj′/2c,1

]
Π
(
φτ − j′π/2

π/2

)
, for j′ = 0, 1, 2, 3,

(7.13)

where b·c denotes the floor function (the largest integer smaller than the argument), and Π

denotes the rectangle function.

Phase masks combined with splitters can be modeled using complex-valued mask func-

tions. For example, Backer et al. used a quadrated phase mask (a tetrahedral phase pyramid)

and an orthogonal polarization splitter [80, 147, 220], which can be modeled with the mask

function

M
(2pol/quad)
nj′ (τx, τy) =

[
δn0δj′0 + δn1δj′1

]
exp[iC(|τx|+ |τy|)], for j′ = 0, 1, (7.14)

where C is a real constant.

The space of possible mask functions is extremely large. The angular rank of an arbitrary

detection path is at most six, so a six-way splitter (J ′ = 6) is an appropriate choice. Under

this constraint the set of possible mask functions lives in the space Mij′(τ ) ∈ L2(R2)12.

Choosing an optimal mask from these possibilities is not trivial, but we can make a few

intuitive speculations about an optimal mask’s features. First, we speculate that an optimal

mask for general spatio-angular microscopy will be real-valued—i.e. it will not modify the

emitted light’s phase. Introducing a phase mask (sometimes called point-spread function

engineering) can be a valuable approach if the designer has a prior about the sample, but in

general a phase mask will broaden the point-spread function and make the reconstruction

more susceptible to corruption by noise. Second, we speculate that an optimal mask function

will display a six-fold symmetry. This hypothesis is based on the intuition we built when

213



we found that the optimal illumination scheme was extremely symmetric (icosahedral). One

example of a splitter that displays six-fold symmetry is an orthogonal polarization splitter

combined with a trisected pupil modeled by the mask function

M
(2p/3a)
nj′ (τ, φτ ) =

[
δn0 cos

(
j′π
3 −

π

2

⌊
j′

3

⌋)
+ δn1 sin

(
j′π
3 −

π

2

⌊
j′

3

⌋)]
Π
(
φτ − j′π/3

π/3

)
,

for j′ = 0, 1, 2, 3, 4, 5.

(7.15)

We hypothesize that this mask optimizes the Schatten 2-norm for general spatio-angular

imaging.

Many mask functions have been designed to optimize the imaging of single molecules.

Phase masks are widely used in single-molecule imaging because they allow the microscope

designer to encode information about the molecule into the shape of point-spread function.

The Lew group has developed a tri-spot phase mask with an orthogonal polarization splitter

[84, 85, 221], which can be modeled by modifying the phase component of Eq. (7.14).

They identified their design by (1) showing that existing designs were rank 5, (2) modifying

their design to measure the missing parameter, then (3) confirming that the new design was

rank 6. This approach led to the first full-rank phase mask, but the mask is asymmetric,

nonintuitive, and potentially suboptimal. Based on our intuition about symmetric sampling

schemes, we hypothesize that an orthogonal polarization splitter with a trisected phase mask

modeled with the mask function

M
(2p/3ph)
nj′ (τ, φτ ) =

[
δn0δj′0 + δn1δj′1

]
exp

[
i C Π

(
φτ − j′π/3

π/3

)]
, for j′ = 0, 1, (7.16)

is full rank and optimizes the Schatten 2-norm of the imaging operator for single molecules.

Clearly there are still many open design problems in spatio-angular imaging. Our discus-

sion in this section has focused on choosing an optimal 6-way split for the detection side, but
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in general we can design both the illumination and detection sampling schemes. With both

polarized illumination and split detection, the maximum rank is 15, so we need to design

15 measurements. The detection rank cannot be larger than 6, so we hypothesize that an

optimal design will use 3 serial illumination polarizations and a 5-way detection-side split-

ter. Even more challenging design problems arise when considering the choices for spatially

structured illumination combined with detection splitters.

We conclude this section by mentioning another important use of the mask function—

modeling aberrations. Most biological samples suffer from depth-dependent, sample-induced

aberrations that degrade image quality, and adaptive optics can be used to estimate and

correct these aberrations. The mask function can be used to model these aberrations and

their potentially polarization-dependent components. We view the application of adaptive

optics to spatio-angular microscopy as important future work.

7.3 Light-field detection

In this section we model a microscope that uses polarized illumination and light-field detec-

tion. A light-field detector consists of a microlens array in the nominal detector plane with

the detector moved to the focal plane of the microlenses. We begin by discussing the imag-

ing system, its symmetries, and its point-response function. Afterwards, we calculate the

imaging system’s transfer function, singular system, and reconstruction scheme.

This section extends Broxton et al. [222] and related work [223] from a wave-optics model

that estimates spatial fluorophore distributions to a vectorial-optics model that estimates

spatio-angular fluorophore distributions. More recently, Quicke has developed a vectorial-

optics model for light-field microscopy, but his work focuses on estimating angularly isotropic

fluorophore densities [224].

As usual, we consider our object to be a three-dimensional angular Boltzmann density

f̄(ro, ŝo) ∈ L2(R3 × S2). A polarized light-field microscope measures the irradiance on a
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two-dimensional plane for each illumination polarization, so the data takes the familiar form

gj(rd) ∈ L2(R2)J and the linear relationship between the object and the data takes the form

gj(rd) =
∫
R3
dro

∫
S2
dŝo h

(lf)
j (rd, ro, ŝo)f̄(ro, ŝo). (7.17)

where h(lf)j (rd, ro, ŝo) is the light-field point-response function, and (lf) indicates that this is

the model for light-field detection.

The model in Eq. (7.17) takes the same form as any polarized illumination single-view

microscope model, except we have not assumed that the point-response function is shift

invariant. To understand the lack of shift invariance, consider an in-focus isotropic emitter

imaged by a light-field detector with the center of a microlens on the optical axis. When the

emitter is positioned on the optical axis, the irradiance will be approximately uniform behind

the central microlens and approximately zero elsewhere. As the emitter is translated in the

focal plane, the image changes its functional form (the shifted emitter’s image is not just a

shifted version of the on-axis emitter’s image). For example, if the emitter is translated to a

position between two microlenses, then the image will be approximately uniform within the

two adjacent microlenses and approximately zero elsewhere. Clearly, a light-field detector is

not shift invariant.

However, if we shift the emitter by an integer number of microlens diameters (in de-

magnified coordinates), then the image will be a shifted version of the original. Although a

light-field detector is not continuously shift invariant, it is discretely shift invariant. Broxton

et al. mention discrete shift invariance as a tool for reducing computations [222, section 3.4],

but they give few details about how they exploit this symmetry. Here we explicitly show

how to exploit the discrete shift invariance of the light-field microscope to reduce the storage

and computation requirements for simulating and reconstructing from polarized light-field

microscope data.

To rewrite Eq. (7.17) in a way that exploits the imaging system’s discrete shift invariance,
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we need to make a change of coordinates. The key insight is that we can parameterize the

real line with a pair of numbers: an integer and a real number with a bounded magnitude.

Mathematically, we can decompose the real line into continuous segments indexed by the

integers R = Z × [−rµ, rµ], where rµ is the microlens radius. Similarly, we can decompose

the plane into continuous squares indexed by pairs of integers R2 = Z2 × [−rµ, rµ]2.

We can use this trick to replace our two-dimensional data coordinate rd ∈ R2 with

a pair of two-dimensional coordinates (rd, r�d), where rd ∈ Z2 indexes the microlens and

r�d ∈ [−rµ, rµ]2 parameterizes the position behind the microlens. Similarly, we can replace

our three-dimensional object-space coordinate ro ∈ R3 with a pair of two-dimensional trans-

verse coordinates and an axial coordinate (ro, r�o, ro), where ro ∈ Z2 indexes the microlens

(projected into object space), r�o ∈ [−rµ, rµ]2 parameterizes the position behind the microlens

(projected into object space), and ro ∈ R parameterizes the axial position.

We can use these new coordinates to rewrite the object, data, point-response function,

and their relationship in Eq. (7.17) as

gj,rd(r
�

d) =
∑
ro

∫
�
dr�o

∫
R
dro

∫
S2
dŝo h

(lf)
j,rd−ro(r

�

d, r
�
o, ro , ŝo)f̄ro(r�o, ro , ŝo), (7.18)

where the argument rd − ro reflects the discrete shift-invariance of the imaging system and

� = [−rµ, rµ]2 is the domain of integration. We can decompose the point-response function

into a product of two functions

h
(lf)
j,r (r�d, r

�
o, ro , ŝo) = h

(exc)
j (̂so)h

(det,lf)
r (r�d, r

�
o, ro , ŝo), (7.19)

where h(exc) is the spatially uniform excitation point-response function we considered in

chapter 5, and h(det,lf) is the detection point-response function that we need to calculate.

In chapter 5 we calculated the function βni(r, ro) as the nth component of the field created

at position r in the nominal detector plane by the ith component of an on-axis dipole emitter
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at defocus position ro . In the light-field detector the fields in the nominal detector plane

need to be modified by the microlens array then propagated to the new detector position.

Each square microlens imparts a phase given by

φ(r) = exp
[
−iπ|r|2

λfµ

]
Π
(
rx
rµ

)
Π
(
ry
rµ

)
, (7.20)

and the complete microlens array imparts the phase

Φ(r) =
∑
r
φ(r− rµr). (7.21)

Immediately after the microlenses, the fields are given by βni(r, ro)Φ(r). Additionally, the

input fields βni(r, ro) are continuously shift-invariant, so shifting the input emitter to position

r�o will give rise to the fields βni(r− r�o, ro)Φ(r) immediately after the microlenses.

The next step is propagate the fields to the detector with a Fresnel propagator [222]

β
(lf)
ni (rd, r�o, ro) =

∫
R2
dr βni(r− r�o, ro)Φ(r) exp

[
−π|r− rd|2

λfµ

]
, (7.22)

which can be evaluated efficiently by filtering in the spatial Fourier domain [134, 225]. Ex-

plicitly, the function β(lf)ni (rd, r�o, ro) is the nth component of the field created at position rd

in the light-field detector plane by the ith component of a dipole at position (r�o, ro). It will

be useful to rewrite this function in terms of our new coordinate system as

β
(lf)
ni (rd, r�o, ro)→ β

(lf)
ni,r(r�d, r

�
o, ro). (7.23)

Now that we know the fields on the detector, we can calculate the irradiance created by
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a sisi′ angular distribution as

B
(lf)
ii′,r(r�d, r

�
o, ro) =

∑
n=0,1

β
(lf)
ni,r(r�d, r

�
o, ro)β(lf)*ni′,r(r�d, r

�
o, ro). (7.24)

Finally, we sum over all possible angular distributions to find the detection point-response

function

h
(det,lf)
r (r�d, r

�
o, ro , ŝo) =

∑
i,i′=0,1,2

B
(lf)
ii′,r(r�d, r

�
o, ro)sisi′ . (7.25)

In chapters 5 and 6 we formulated all of our models and reconstructions schemes as

continuous-to-continuous algorithms. For real reconstructions we recommended that each

continuous coordinate be replaced by discretely sampled coordinates at each detector pixel

position, and that each Fourier transform should be approximated by a discrete Fourier trans-

form. These recommendations ignore the effects of pixel-sized sampling apertures, but they

are reasonable approximations when the reconstructions are computationally constrained.

In light-field reconstructions we no longer have the luxury of an obvious discretization

scheme because of the lack of continuous shift-invariance—we need to explicitly choose a dis-

cretization scheme for both data and object space. The data-space discretization is obvious—

choose sampling apertures that match the real pixels:

w
(det)
r�d

(r�d) = Π
(

r�d − rpxr�d
rpx

)
, (7.26)

where rpx is half the pixel side length. In typical designs the number of pixels along each

side of a microlens is rµ/rpx ≈ 10–20. Choosing a discretization scheme for the object is less

obvious. Broxton used the object-space discretization

w
(obj)
r�o,ro

(r�o, ro) = Π
(

r�o − r⊥vxr�o
r⊥vx

)
Π
(
ro − rvxro

rvx

)
, (7.27)
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where r⊥vx is the transverse extent of the object-space voxels and rvx is the axial extent

of the object-space voxels. Typical choices for are r⊥vx ≈ rµ/3 and rvx ≈ rµ, but these

are only guidelines. Light-field microscopes have depth-dependent transverse resolution, so

depth-dependent grid sizes may be worth investigating.

Now we can discretize the detection point-response function with

h
(det,lf,dd)
r,r�d,r

�
o,ro

(̂so) =
∫
�
dr�dw

(det)
r�d

(r�d)
∫
�
dr�o

∫
R
dro w

(obj)
r�o,ro

(r�o, ro)h(det,lf)r (r�d, r
�
o, ro , ŝo). (7.28)

Multiplying this point-response function with the excitation point-response function yields

the complete discrete-to-discrete model of the light-field microscope

h
(lf,dd)
j,r,r�d,r

�
o,ro

(̂so) = h
(exc)
j (̂so)h

(det,lf,dd)
r,r�d,r

�
o,ro

(̂so), (7.29)

and the relationship between the discretized object and data is given by

gj,rd,r�d
=
∑
ro

∑
r�o

∑
ro

∫
S2
dŝo h

(lf,dd)
j,rd−ro,r�d,r

�
o,ro

(̂so)f̄ro,r�o,ro
(̂so). (7.30)

Although we have not discretized the angular coordinate ŝo, we still consider this a discrete-

to-discrete model because the imaging system transfers only fifteen angular components.

Instead of discretizing the detection point-response function directly, we can discretize

the irradiance created by an sisi′ angular distribution

B
(lf,dd)
ii′,r,r�d,r

�
o,ro

=
∫
�
dr�dw

(det)
r�d

(r�d)
∫
�
dr�o

∫
R
dro w

(obj)
r�o,ro

(r�o, ro)B(lf)
ii′,r(r�d, r

�
o, ro), (7.31)

and calculate the detection point-response function as

h
(det,lf,dd)
r,r�d,r

�
o,ro

(̂so) =
∑

i,i′=0,1,2
B
(lf,dd)
ii′,r,r�d,r

�
o,r

sisi′ . (7.32)
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We will use the function B(lf,dd)
ii′,r,r�d,r

�
o,r

to simplify our next calculation.

Now we are ready to calculate the transfer functions for the polarized illumination light-

field microscope. We start by defining an imaging operator H(lf,dd) with entries

(
êj êrd êr�d

,H(lf,dd)êro êr�o êro
ê(̂so)

)
= h

(exc)
j (̂so)h

(det,lf,dd)
rd−ro,r�d,r

�
o,ro

(̂so). (7.33)

Changing to a basis of object-space spherical harmonics yields

(
êj êrd êr�d

,H(lf,dd)êro êr�o êro
Ê`m

)
=
∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
j,`′m′H

(det,lf,dd)
rd−ro,r�d,r

�
o,ro ,`′′m′′

, (7.34)

where the expression for H(exc)
j,`′m′ can be found in Eq. (5.53), and H(det,lf,dd)

r,r�d,r
�
o,ro ,`m

is given by

H
(det,lf,dd)
r,r�d,r

�
o,ro ,`m

=
∑

i,i′=0,1,2
G
mεiεi′
`11 B

(lf,dd)
ii′,r,r�d,r

�
o,r

, (7.35)

and ε0 = 1, ε1 = −1, and ε2 = 0. Finally, changing to a basis of complex exponentials yields

(
êjÊvd êr�d

,H(lf,dd)Êvo êr�o êro
Ê`m

)
= H(lf,dd)

j,vd,r�d,r
�
o,ro ,`m

δvd,vo , (7.36)

where

H(lf,dd)
j,v,r�d,r

�
o,ro ,`m

=
∑
`′m′

∑
`′′m′′

Gmm
′m′′

``′`′′ H
(exc)
j,`′m′H

(det,lf,dd)
v,r�d,r

�
o,ro ,`′′m′′

, (7.37)

and

H(det,lf,dd)
v,r�d,r

�
o,ro ,`′′m′′

=
∑
r
H

(det,lf,dd)
r,r�d,r

�
o,ro ,`m

exp[−i2πr · v] (7.38)

is the two-dimensional discrete-space Fourier transform.
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Now we are ready to solve the eigenvalue problem

[H(lf)]†H(lf)u(lf)
p,p�,k = µ

(lf)
p,p�,ku(lf)

p,p�,k, (7.39)

where (p, p�, k) ∈ Z2 × Z2 × Z are discrete indices for the eigenfunctions. Notice that we

have purposefully excluded an axial index p because we are only taking a single image of

the three-dimensional object.

Choosing a basis for the object-space singular functions and exploiting the discrete two-

dimensional shift invariance yields functions of the form

(
êrêr�o êro

Ê`m,u
(lf)
p,p�,k

)
= Ũ

(lf)
p�,k;r�o,ro ,`m

(p) exp[2πip · r]. (7.40)

After a long calculation that mimics section 6.2, we find that the eigenvalue problem can be

expressed in this basis as

∑
r�′o ,r

′
o ,`
′m′

∑
r�d,j

H(lf,dd)∗
j,p,r�d,r

�
o,ro ,`m

H(lf,dd)
j,p,r�d,r

�′
o ,r

′
o ,`
′m′

 Ũ (lf)
p�,k;r�′o ,r

′
o ,`
′m′

(p)

= µ
(lf)
p,p�,kŨ

(lf)
p�,k;r�o,ro ,`m

(p). (7.41)

If we let N denote the number of elements in the set {r�o, ro, `m} (typically ≈ 32×50×15 =

6750), then the square brackets in Eq. (7.41) enclose an N × N matrix for each discrete

spatial frequency p. The rank of this matrix is at most the size of the set {r�d, j} (typically

≈ 202 × 6 = 2400). Calculating the eigenvalues and eigenvectors of this matrix yield µ(lf)p,p�,k

and Ũ (lf)
p�,k;r�o,ro ,`m

(p), respectively.

Now we can calculate the complete object-space singular functions with

u
(lf)
p,p�,k;ro,r�o,ro

(̂so) = exp[2πip · ro]
∑
`m

Ũ
(lf)
p�,k;r�o,ro ,`m

(p)Y`m(̂so). (7.42)
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We can compute the data-space singular functions by calculating

Ṽ
(lf)
p�,k;j,bttr�d

(p) =
√
µ
(lf)
p,p�,k

∑
r�o,ro ,`m

H(lf,dd)
j,p,r�d,r

�
o,ro ,`m

Ũ
(lf)
p�,k;r�o,ro ,`m

(p), (7.43)

then multiplying the result by discrete complex exponentials

v
(lf)
p,p�,k;j,rd,r�d

= Ṽ
(lf)
p�,k;j,r�d

(p) exp[2πip · rd]. (7.44)

A Tikhonov-regularized reconstruction of light-field data takes a similar form to our

previous reconstruction schemes. Starting with data gj,rd,r�d , we take the discrete Fourier

transform along the microlens index dimension

Gj,v,r�d
=
∑
rd
gj,rd,r�d

exp[2πird · v]. (7.45)

Next, we compute our object-space estimates with a Tikhonov-regularized pseudoinverse

ˆ̄Fη;v,r�o,ro,`m
=
∑
p�,k

√
µ
(lf)
v,p�,k

µ
(lf)
v,p�,k + η

Ũ
(lf)
p�,k;r�o,ro ,`m

(v)
∑
j,r�d

Ṽ
(lf)
p�,k;j,r�d

(v)Gj,v,r�d . (7.46)

Finally, we take the inverse discrete Fourier transform

ˆ̄Fη;r,r�o,ro,`m
=
∑
v

ˆ̄Fη;v,r�o,ro,`m
exp[2πiv · r], (7.47)

and store the result. As usual, we can visualize the reconstruction using the methods dis-

cussed in chapter 5.
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7.4 Discussion

All of the emerging instruments discussed in this chapter have a potentially useful niche.

Spatially structured illumination will be essential for maximizing the spatial resolution of

spatio-angular imaging, and early designs are already beginning to appear [115, 226]. The

light-sheet illumination scheme we considered in chapter 6 is another form of structured il-

lumination that we exploited for optical sectioning [101], and point-scanning structured illu-

mination techniques show additional promise for fast high-resolution spatio-angular imaging

[93, 94]. We anticipate that the highest resolution spatio-angular microscopes that image

densely labeled objects will employ some form of spatially structured illumination.

Detection-side polarization splitters and pupil splitters will be essential for pushing the

angular resolution of spatio-angular imaging systems into the ` = 4 band. Additionally,

detection-side polarizers and splitters are much faster than the angularly structured illumi-

nation schemes that we considered in chapters 5 and 6—it is much faster to take parallel

detection-side polarization measurements than serial illumination-side polarization measure-

ments. We anticipate that the fastest spatio-angular microscopes with rotationally invariant

angular resolution will employ a six-way detection-side polarization and pupil splitter.

Finally, light-field detection designs show promise for fast detection of thick three-

dimensional angular distributions, but challenges still lie ahead. First, light-field detec-

tion schemes are known to display depth-dependent transverse resolution. This is not an

issue for reconstructing sparse samples, but it can make the interpretation of dense samples

challenging. Second, early analysis of the singular systems of light-field detection systems

has shown that these imaging systems display depth-dependent angular resolution. This

makes the interpretation of the reconstructions even more challenging. Finally, efficient im-

plementations of the models and reconstructions schemes described in this chapter are not

trivial to develop and debug. Any comparison of computational microscopes needs to con-

sider both the computation required to reconstruct from data and the expertise and time
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required to develop the reconstruction scheme. On these metrics, light-field detection designs

are at a disadvantage compared to any three dimensionally shift-invariant imaging system.

However, we believe that these challenges can be overcome, and we anticipate that light-field

spatio-angular imaging systems will outperform other designs for reasonably thin samples

(a few depths of field thick) with fast dynamics when diffraction-limited spatial resolution is

not necessary.
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CHAPTER 8

CONCLUSIONS AND OUTLOOK

This dissertation has demonstrated that spatio-angular fluorescence microscopy is possible,

practical, and useful. By unifying polarized fluorescence spectroscopy, microscopy, and image

science into a mathematical framework then studying the physical limits that this class of

instruments face, we have been able to design novel imaging systems that can measure new

information from densely labeled fluorescent samples.

We began in chapter 2 by describing ensembles of fluorescent dipole emitters as members

of the Hilbert space L2(R3 × S2)—square-integrable functions that take a value at each

point on a sphere and at each point in space—and images as members of the Hilbert space

L2(R2)—square-integrable functions that take a value at each point on a plane. We described

the mapping between these spaces with a linear Hilbert-space operator H and described how

this operator can be usefully expressed in four different bases.

In chapter 3 we calculated the specific form of the entries of H for a paraxial 4f imaging

system and demonstrated how these entries can be used. Studying the specific form of

the transfer functions led us to conclude that the fields emitted by dipole emitters create

angularly bandlimited signals that carry six times as much information as monopole emitters.

In chapter 4 we analyzed a complete spatio-angular fluorescence experiment: polarized

illumination followed by angular diffusion, emission, and detection by a high-NA imaging

system. We found that angular diffusion in a potential cannot be described by a single

rotational time scale—the full spectrum of the angular diffusion operator must be considered.

To avoid this complexity and allow for reconstructions, we studied cases where the complete

imaging process is approximately linear.

In chapter 5 we posed general spatio-angular inverse problems and found the parameter

regimes where they are linear. In these specific cases, we calculated singular value decompo-

sitions of the relevant operators and found that icosahedral polarization sampling schemes
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are optimal.

In chapter 6 we used all of the work in chapters 2–5 to develop a model for a polarized

illumination dual-view light-sheet imaging system. We found the limits of this imaging

system, proposed an augmented system that could measure the orientation of all fluorescent

molecules, then demonstrated that our models made useful predictions. In this chapter we

demonstrated the first imaging system that can measure the three-dimensional position and

orientation of densely labeled fluorescent molecules.

In chapter 7 we extended our imaging models to a wider range of microscopes includ-

ing systems with spatially structured illumination, detection-side polarization and aperture

splitters, and light field detectors. We concluded that there is still room for development in

spatio-angular fluorescence microscopy, and we speculated on the form that future optimal

designs might take.

A critic of this dissertation may point to a lack of specific scientific application or broader

societal impact. Are we solving problems that do not need to be solved? The author values

these concerns and offers three defenses for the value of this work.

First, existing biological applications can benefit. In chapter 1 we reviewed a

varied set of biological applications that use polarized fluorescence spectroscopy or polarized

fluorescence microscopy. This work has shown that these efforts have not yet exploited

the full potential of the signals emitted by dipole emitters. The author feels confident

that instruments and reconstruction techniques that achieve physical limits will lead to new

discoveries in biology.

Second, elegant theory is valuable. Reasoning about physical systems, instrument

designs, and reconstructions is extremely difficult without solid theoretical tools. This work

has introduced many theoretical tools with the goal of streamlining thinking, not impeding

it. Although the notation and details can be intimidating, the high-level ideas—geometry
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first, symmetry second, basis third—are simple, and they can aid the reasoning of any prac-

titioner. The author feels confident that this dissertation has introduced tools to the fields

of polarized fluorescence spectroscopy and fluorescence microscopy that will make their work

easier, not harder. Please note that the claim “elegant theory is valuable” does not contradict

any claim for the value of experiment. Science and engineering cannot proceed without ex-

periment, and this author celebrates the exciting back-and-forth relationship between theory

and experiment.

Third, synthesis is enabling. Perrin’s work synthesized several disparate observations

into a consistent model that enabled later applications that he did not envision, and similar

examples abound in the history of science. This author is hopeful that this work has syn-

thesized polarized fluorescence spectroscopy, fluorescence microscopy, and image science in

a way that will enable future applications.

What kinds of applications might spatio-angular fluorescence microscopy enable? One

potential area is fluorescent force sensors. By encoding the force across a protein into the

orientation and rotational mobility of a dipole emitter (see Fig. 8.1), biologists may be able

to exploit spatio-angular fluorescence microscopy to read out pico-newton scale directional

forces in three dimensions. Existing methods are limited to measuring force magnitudes (|F|)

with a single channel at SNRs typical of fluorescent proteins, while the proposed approach

would allow measurements of three-dimensional force vectors (F) in multiple channels at

SNRs typical of synthetic fluorophores.

Another potential area is fluorescent voltage sensing. Many existing sensors encode mem-

brane potentials (V ) into the brightness of a fluorescent molecule so that neural activity can

be monitored in living organisms. The scalar potential is sufficient to determine the complete

electric field (E) when charges are static, but charges are not static in neurons. To deter-

mine the electric field when charges are moving, the vector potential (A) must be measured

at the same time as the scalar potential. Do vector potentials play any role in neural func-
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Figure 8.1: The proposed molecular force sensor consists of a HaloTag conjugated to a
synthetic fluorescent ligand sandwiched between a pair of elastic linkers. (A) Without tension
the dipole moment of the fluorescent molecule is free to rotate randomly. (B) Under tension
the dipole moment is parallel to the tension force. Therefore, the force orientation and
magnitude are encoded into the orientation and rotational mobility of the fluorophore which
can be decoded using spatio-angular microscopy.

tion? Can both scalar and vector potentials be encoded into the orientation and rotational

mobility of fluorescent molecules?

Some of the mathematical models developed in this work may have broader applica-

tions as well. Ensembles of dipole emitters can be usefully modeled as functions from each

point in space and each point on the sphere to real numbers f : R3 × S2 → R and simi-

lar functions arise in diffusion MRI. Inspiration for new imaging systems may flow in both

directions. Modeling transmission polarized microscopes will require the more formidable

object space of unitary matrix-valued functions f : R3 → SU(3), where SU(3) is the space

of 3×3 unitary matrices with determinant +1. Members of SU(3) can be used to describe

birefringent and diattenuating objects that modify the polarization state of the light passing

through them [219]. We expect that Fourier analysis of operators acting on L2(R3;SU(3))

will lead to extensions of the insights collected in this dissertation. An additional challenge is

that transmission microscopy is bilinear instead of linear, so generalizations of bilinear trans-

fer functions (often called transmission cross coefficients in microscopy [227]) will be required.

The results in this dissertation and the potential applications make the author very

optimistic for the future of spatio-angular fluorescence microscopy. Onwards!
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