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ABSTRACT

Polarized-light microscopy can be used to measure the orientation of single molecules in
living cells [1]. By exciting and imaging a fluorescent specimen with several polarization
orientations in sequence, researchers can calculate the orientation of single molecules and
use the results to draw biological conclusions.

Unfortunately, most existing polarized-light microscopy techniques can only measure the
orientation of the projection of the dipole moment into the transverse plane. Even methods
that are sensitive to the three-dimensional orientation of molecules [2] suffer from degener-
acy and highly anisotropic orientation uncertainty. An i1deal microscope could measure the
orientation of molecules uniquely with a small and uniform uncertainty for all orientations.

In this work we evaluate the ability of multiview polarized illumination microscopes to
determine the three-dimensional orientation of fixed single-molecule fluorescence transition
dipoles [3]. We find that multiview microscopes have fewer degeneracies and more uniform
orientation uncertainty compared to single-view microscopes. We discuss optimal design
choices, reconstruction techniques, and preliminary experimental results.
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Fig. 1: Monopoles emit unpolarized light isotropically while dipoles emit polarized light
anisotropically. A quickly rotating dipole or many dipoles oriented in all directions approx-
imate a monopole emitter. Polarized light microscopes exploit the emission and excitation
patterns of dipoles to find their orientation. If a fluorophore is rigidly attached to a structure
of interest, the fluorophore’s orientation can report valuable information to biologists.
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Fig. 2: Left: Single-view and Right: dual-view microscopes. Single-view microscopes have
poor axial resolution and illuminate out-of-focus regions. Dual-view microscopes can use
light-sheet 1llumination to achieve 1sotropic resolution and reduce phototoxicity.
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Fig. 3: Cramér-Rao lower bound analysis of Row 1: single- and Row 2: dual-view mi-
croscopes. Dual-view microscopes have fewer degeneracies and more uniform orientation
uncertainty compared to single-view microscopes.
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Fig. 4: We imaged fixed U20S cells stained with Alexa Fluor 488 Phalloidin using an asym-
metric 1.1/0.71 NA dual-view light-sheet microscope with polarized illumination. Above:
Maximum-intensity projections through the eight collected volumes. We collected each vol-
ume with a different view (rows) and illumination polarization (columns). Red: Profiles
through each volume show that changing the view and polarization modulates the measured
intensity. Scale bars = 10 ym.
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Eq. 1: Spatio-angular forward model assuming independent dipole emitters.
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Angular density Constrained to a Measured Transfer Discrete spherical Variable
estimate single orientation intensities function Fourier transtorm

Eq. 2: Angular reconstruction assuming that the spatial and angular problems are separable.
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Fig. 5: We solved the optimization problem in Eq. 2 for every 0.135x0.135x0.135 pm?
voxel in the 68 x 108x46 pm® volume of data shown in Fig. 4. We visualize the result by
assigning a scaled and oriented cylinder to approximate the number and orientation of flu-
orophores 1n each voxel. Inset: Two manually highlighted actin fibers. Our reconstructed
orientations are approximately aligned with the long axes of the actin fibers as expected.
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